期刊文献+

Integration of network pharmacology and bone marrow mesenchymal stem cells experimental research to reveal the molecular mechanisms for Hai Honghua medicinal liquor against osteoporosis

下载PDF
导出
摘要 Background:Hai Honghua medicinal liquor(HHML)formula has been used in clinical practice for a long time,mainly for the treatment of freshly closed fractures,to promote osteogenesis,to increase bone mass,and thus to promote fracture healing.However,the underlying mechanisms of HHML in the treatment of osteoporosis(OP)are still unclear.Methods:Firstly,Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform and The Encyclopedia of Traditional Chinese Medicine were used to screen the targets of the active compounds of HHML.At the same time,OP targets were identified through GeneCards,Online Mendelian Inheritance in Man,DisGeNET,Therapeutic Target Database,Comparative Toxicogenomics Database and Human Phenotype Ontology databases.Next,protein-protein interaction and pathway networks were constructed for compound-disease common targets,and core targets and compounds were screened for molecular docking.Furthermore,rat bone marrow mesenchymal stem cells were extracted as model cells,and the osteogenic effects of HHML were verified via in vitro experiments.Results:Total of 343 common targets of HHML-OP and the top 10 target proteins in the protein-protein interaction network are TP53,AKT1,STAT3,HSP90AA1,ESR1,TNF,IL6,MAPK1,MAPK3 and MAPK8.Enrichment analysis yielded that the key molecular pathway was the PI3K/Akt signaling pathway.Molecular docking analysis showed that baicalein,erysodienone and naringenin docked with the target proteins AKT1,STAT3 and TP53,respectively,with low binding energy and high affinity.In addition,In vitro experiments demonstrated that HHML promoted the proliferation of bone marrow mesenchymal stem cells;compared with the control group,HHML-treated cells showed enhanced alkaline phosphatase staining,promoted the expression of OCN,RUNX2,BSP,and COL1 mRNAs as well as the expression of PI3K and AKT phosphorylated proteins.Secondly,the expression of target proteins revealed that HHML promoted the phosphorylation of STAT3 protein and inhibited the expression of P53.Conclusions:Our study investigated that HHML treatment with OP promotes bone formation possibly through activation of the PI3K/Akt signaling pathway and may involve STAT3 and TP53 target interactions.
出处 《Integrative Medicine Discovery》 2024年第3期1-11,共11页
基金 supported by the Project of State Administration of Traditional Chinese Medicine of Sichuan Province of China (No.2021MS407).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部