摘要
针对隐式符号距离函数重建这一问题,提出一种高精度的符号距离函数重建方法.首先,基于快速行进法获得离散的符号距离场;其次,针对离散符号距离场进行B样条自适应拟合;最后,为了提高重建的边界拟合精度,在拟合的目标函数中考虑了边界误差,得到了在边界上具有较高精度的离散符号距离函数重建结果.实验结果表明,通过上述方法获得的隐式符号距离函数重建结果,在保证符号距离函数拟合良好的情况下其零水平集能很好的贴合原始边界.
A high-precision method is proposed to reconstruct the implicitly signed distance function.Firstly,we obtained the discrete signed distance field by using the fast marching method;secondly,the B-spline adaptive fitting is performed for the discrete signed distance field;finally,to improve the boundary fitting accuracy of the reconstruction,the boundary error is taken into account in the objective function.Hence,the reconstruction results have good performance along the boundaries.Experimental results are presented to show the advantages of our method.
作者
王昕
王旭辉
WANG Xin;WANG Xuhui(School of Mathematics,Hefei University of Technology,Hefei 230000,China;Department of Mathematics,Hohai University,Nanjing 210000,China)
出处
《大学数学》
2024年第1期1-7,共7页
College Mathematics
基金
国家自然科学基金面上项目(61772167)。
关键词
B样条
符号距离函数
隐式函数
快速行进法
水平集
B-spline
signed distance function
implicit function
fast marching method
level set