期刊文献+

AgInS_(2)量子点调控及其在WLED应用上的研究进展

Research progress on AgInS_(2) quantum dot regulation and its application in WLED
下载PDF
导出
摘要 AgInS_(2)量子点是一种有趣的材料,其近红外带隙范围从1.87到1.98 eV,作为直接带隙半导体,它能通过调节Ag/In比例来调节带隙,它还具有较宽的PL峰和较大的Stokes位移,同时低毒环保的特性也使它成为有望替代含Cd、Hg和Pb等重金属元素的二元量子点的理想材料,在光电器件领域尤其在发光二极管中有着广泛的应用前景。本文详细阐述了AgInS_(2)量子点晶体结构和发光机制,总结了其合成方法的特点并综述了通过壳体工程和掺杂的方法对AgInS_(2)量子点进行调控的策略,最后介绍了该类量子点在发光二极管方面的应用进展。 AgInS_(2) quantum dots are an interesting material with a near-infrared band gap ranging from 1.87 to 1.98 eV.As a direct band gap semiconductor,it can adjust the band gap by adjusting the Ag/In ratio,and it also has a wide PL peak and a large Stokes shift.At the same time,the characteristics of low toxicity and environmental protection also make it an ideal material to replace binary quantum dots containing heavy metal elements such as Cd,Hg and Pb,and has a wide application prospect in the field of optoelectronic devices,especially in light emitting diodes.In this paper,the crystal structure and luminescence mechanism of AgInS_(2) quantum dots are described in detail,the characteristics of synthesis methods are summarized,and the strategies of regulating AgInS_(2) quantum dots by shell engineering and doping methods are reviewed.Finally,the application progress of AgInS_(2) quantum dots in light-emitting diodes is introduced.
作者 刘汉语 谢志翔 陈婷 董延茂 周兴 袁妍 吴海涛 陈勇号 LIU Hanyu;XIE Zhixiang;CHEN Ting;DONG Yanmao;ZHOU Xing;YUAN Yan;WU Haitao;CHEN Yonghao(College of Chemistry and Life Sciences,University of Science and Technology,Suzhou 215009,China;College of Materials Science and Engineering,University of Science and Technology,Suzhou 215009,China;National Engineering Research Center for Domestic&Building Ceramics,Jiangdezhen 333001,China;College of Environmental Science and Engineering,University of Science and Technology,Suzhou 215009,China)
出处 《功能材料》 CAS CSCD 北大核心 2024年第2期2041-2051,2104,共12页 Journal of Functional Materials
基金 国家自然科学基金项目(52062019)。
关键词 AgInS_(2) 量子点 合成 优化 WLED AgInS_(2) nanoparticles synthesis optimization WLED
  • 相关文献

参考文献6

二级参考文献79

  • 1D. Das, B. Chandra Nath, E Phukon, A. Kalita, S. Kumar Dolui, Colloids Surf. B 111 (2013) 556-560.
  • 2S. Singh, K.C. Barick, D. Bahadur, Cryst. Eng. Comm. 15 (2013) 4631-4639.
  • 3A. Kajbafvala, H. Ghorbani, A. Paravar, J.E Samberg, E. Kajbaf- vala, S.K. Sadmezhaad, Superlattices Microstruct. 52 (2012) 512-- 522.
  • 4C. Zhang, Z. Huang, X. Liao, G. Yin, J. Gu, J. Coat. Technol. Res. 9 (2012) 621-628.
  • 5S. Ydmaz, E. McGlynn, E. Bacakslz, J. Cullen, R.K. Chellappan, Chem. Phys. Lett. 525 (2012) 72-76.
  • 6T. Diefl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019-1022.
  • 7K. Sato, K. Katayama, H. Yoshida, Jpn. J. Appl. Phys. 39 (2000) 555--558.
  • 8S.S. Yah, C. Ren, X. Wang, Y. Xin, Z.X. Zhou, L.M. Mei, M.J. Ren, Y.X. Chen, Y.H. Liu, H. Garmestani, Appl. Phys. Lett. 84 (2004) 2376--2379.
  • 9W. Prellier, A. Fouchet, B. Mercey, C. Simon, B. Raveau, Appl. Phys. Lett. 82 (2003) 3490-3493.
  • 10S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. 84 (2004) 5255-5258.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部