期刊文献+

影像组学及深度学习联合血液炎性指标预测胶质瘤预后的价值

Value of combining radiomics and deep-learning with hematological inflammatory markers in predicting the prognosis of glioma
下载PDF
导出
摘要 目的 探讨基于影像组学和深度学习特征评分(radiomics-deep learning score, RD-score)联合血液炎性指标构建的列线图在术前预测胶质瘤预后的价值。材料与方法 回顾性分析166例临床确诊胶质瘤的患者病例,按8∶2随机分为训练集(133例)和验证集(33例)。收集患者的临床、血液炎性指标资料,构建组合变量系统性炎症指数(systemic immune inflammation index, SII)、全身炎症反应指数(system inflammation response index, SIRI)、衍生中性粒细胞与淋巴细胞比值(derived neutrophil-to-lymphocyte ratio, dNLR)、中性粒细胞与淋巴细胞比值(neutrophil-to-lymphocyte ratio, NLR)、单核细胞与淋巴细胞比值(monocyte-to-lymphocyte ratio, MLR)、血小板与淋巴细胞比值(platelet-to-lymphocyte ratio, PLR)并计算其截断值。勾画胶质瘤感兴趣体积(volume of interest, VOI)并提取影像组学及深度学习特征,利用最小绝对值收敛和选择算子(least absolute shrinkage and selection operator, LASSO)-Cox进行特征筛选,构建基于影像组学特征评分(radiomics-score,Rad-score)、基于深度学习特征评分(deep learning-score, DL-score)以及RD-score模型,并比较三者的受试者工作特征曲线下面积(area under the curve, AUC)以评估其预测效能;基于RD-score对胶质瘤患者进行危险分层,并通过Kaplan-Meier生存分析绘制生存曲线。结合患者的临床因素、血液炎性指标和RD-score,使用多因素Cox回归构建术前预测总生存期(overall survival, OS)的RD-score模型、临床血液学模型和联合模型,计算AUC以评估各模型预测胶质瘤1、3、5年生存率的效能。绘制联合模型列线图,采用C指数(C-index)、校准曲线及决策曲线分析(decision curve analysis, DCA)评估列线图效能。结果 最终筛选出10个组学特征和8个深度学习特征用以构建RD-score。RD-score的预测效能高于Rad-score及DL-score(DeLong检验,P<0.05),根据RD-score可将胶质瘤分为高风险组(RD-score≥1.09)和低风险组(RD-score<1.09)。多因素Cox回归结果显示年龄、肿瘤分级、术后化疗、SIRI和RD-score是胶质瘤预后的独立预测因素,基于以上因素构建的联合模型在训练集和验证集中的AUC高于RD-score模型及临床血液学模型(DeLong检验,P<0.05)。联合模型的可视化列线图预测OS的C-index分别为0.844和0.849;校准曲线提示在观察值和预测值之间有良好的一致性,DCA显示列线图有较高的净收益。结论 基于影像组学和深度学习的RD-score联合临床-血液炎性指标构建的列线图可以在术前有效预测胶质瘤患者的预后。 Objective:To explore the value of a nomogram constructed by integrating radiomics and deep learning-based score(RD-score)with hematological inflammatory markers in preoperatively predicting the prognosis of glioma.Materials and Methods:A total of 166 clinically diagnosed glioma patients were retrospectively enrolled and randomly divided into a training set(133 cases)and a validation set(33 cases)in an 8:2 ratio.Clinical and hematological inflammatory marker of the patients were collected.Composite variables,including systemic immune inflammation index(SII),systemic immune response index(SIRI),derived neutrophil-to-lymphocyte ratio(dNLR),neutrophil-to-lymphocyte ratio(NLR),monocyte-to-lymphocyte ratio(MLR),and platelet-to-lymphocyte ratio(PLR)were constructed,and their optimal cut-off values were calculated.Delineating the volume of interest(VOI)for gliomas and extracting radiomics and deep learning features,utilizing least absolute shrinkage and selection operator(LASSO)-Cox for feature selection.Constructing radiomics-score(Rad-score),deep learning-score(DL-score),and RD-score,and comparing their receiver operating characteristic area under the curve(AUC)to assess predictive performance.Kaplan-Meier survival analysis was used to stratify glioma patients based on their RD-score.Integrating clinical data,hematological inflammatory marker,and RD-score,employing multivariable Cox regression to build RD-score model,clinical hematology model,and joint model to predict overall survival(OS).Calculating AUC to evaluate the efficiency of each model in predicting glioma 1,3,and 5-year survival rates.Drawing joint model nomogram and assessing their performance using C-index,calibration curves,and decision curve analysis(DCA).Results:After feature selection,10 radiomics features and 8 deep learning features were selected.The predictive performance of RD-score surpassed that of Rad-score and DL-score(DeLong test,P<0.05).The constructed RD-score divided gliomas into high-risk group(RD-score≥1.09)and low-risk group(RD-score<1.09).The results of the multivariable Cox regression showed that age,tumor grade,postoperative chemotherapy,SIRI,and RD-score were independent prognostic factors for glioma.The joint model,incorporating these factors,exhibited higher AUC in the training and validation sets compared to the RD-score model and clinical hematology model(DeLong test,P<0.05).The visual nomogram of the joint model predicted OS with C-indices of 0.844 and 0.849 in the training and validation sets,respectively.Calibration curves indicated good consistency between observed and predicted values,and DCA demonstrated a high net benefit for the nomogram.Conclusions:The nomogram constructed by combining radiomics and deep learning-based RD-score with clinical-hematological inflammatory marker can effectively predict the prognosis of glioma patients preoperatively.
作者 赵杉 阎子康 杨骏骏 张文韬 潘世娇 徐胜生 ZHAO Shan;YAN Zikang;YANG Junjun;ZHANG Wentao;PAN Shijiao;XU Shengsheng(Department of Radiology,the First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China;Department of Bioinformatics,the Basic Medical School of Chongqing Medical University,Chongqing 400016,China;Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education,Chongqing University,Chongqing 400044,China)
出处 《磁共振成像》 CAS CSCD 北大核心 2024年第1期88-94,100,共8页 Chinese Journal of Magnetic Resonance Imaging
关键词 胶质瘤 磁共振成像 影像组学 深度学习 机器学习 预后 血液炎性指标 glioma magnetic resonance imaging radiomics deep learning machine learning prognosis hematological inflammatory markers
  • 相关文献

参考文献5

二级参考文献27

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部