期刊文献+

基于头峰的多步分解反应过程热失控特征参数计算方法研究

Calculation Methods of Thermal Runaway Parameter for Multi⁃step Decomposition Processes Based on the First Peak
下载PDF
导出
摘要 目前微通道反应器在含能材料合成领域广泛应用,极大提高了合成过程的安全性,但是仍然需要关注物料的热稳定性。绝热条件下最大反应速率到达时间(TMR_(ad))与TMR_(ad)为24 h所对应的引发温度(T_(D24))是两个表征危险化学品及含能材料热分解危险性的重要特征参数,这两个参数的传统计算方法为单步N级法和数值计算法,存在分析过程费时费力的缺点。为此,根据差示扫描量热仪动态升温测试曲线,提出了基于头峰(即多峰曲线分峰后的第一个峰)的热分解失控特征参数计算方法,采用穷举法比较了该方法与模型计算法的T_(D24)偏差,进行了数值模拟验证,并基于文献实验计算了1,8-二硝基蒽醌、改性硝基胍(M-NQ)、1,5-二硝基蒽醌和3,4-二硝基呋咱基氧化呋咱(DNTF)4种物质的热失控特征参数。数值模拟结果表明,对于两步和三步连续反应,T_(D24)的最大偏差百分比分别为2.88%和6.9%,最大偏差为6.41℃;对于三步连续反应,T_(D24)最大偏差为5.39℃。结果表明,4种含能材料的T_(D24)计算偏差分别为-4.55,0.71,3.16℃和-0.84℃,与模型计算法得到的T_(D24)相比,偏差百分比的绝对值均小于2%,证实了T_(D24)计算方法的有效性,计算T_(D24)时偏差较小,计算简便,能够较为准确地获得其热分解失控特征参数。 Currently,microchannel reactors are extensively employed in the synthesis of energetic materials,significantly en⁃hancing the safety of the synthesis process.However,it is still crucial to consider the thermal stability of these materials.Two im⁃portant parameters that characterize the risk of thermal decomposition for hazardous chemicals and energetic materials are the time to maximum rate under adiabatic conditions(TMR_(ad))and the initiation temperature(T_(D24)),which corresponds to the time to maximum rate within 24 hours.The traditional calculation methods for these two parameters are the single⁃step N⁃order method and numerical calculations,which have drawbacks such as being time⁃consuming and labor⁃intensive during analysis.To ad⁃dress this issue,this study proposes a method for calculating characteristic parameters of thermal runaway decomposition based on the first peak observed after splitting a multi⁃peak curve in dynamic test curves obtained from Differential Scanning Calorime⁃ter(DSC).Furthermore,a comparison between this paper’s method and a modeling method using an exhaustive approach was conducted by evaluating T_(D24)deviation.Numerical simulation was employed for verification purposes,enabling calculation of thermal runaway characteristic parameters of four substances,namely 1,8⁃dinitroanthraquinone,M⁃NQ,1,5⁃dinitroanthraqui⁃none,and DNTF based on literature experiments.The results indicate that numerical simulations demonstrate a maximum per⁃centage T_(D24)deviation of 2.88%and 6.9%for two⁃step and three⁃step consecutive reactions respectively.The maximum devia⁃tion observed was 6.41℃;for three⁃step continuous reactions,the T_(D24)exhibited a maximum deviation of 5.39℃.Furthermore,experimental results employing the methodology proposed in this study demonstrated that the T_(D24)values for four energetic mate⁃rials were calculated with the deviations of-4.55℃,0.71℃,3.16℃,and-0.84℃respectively;all absolute percentage devia⁃tions were less than 2%when compared to T_(D24)obtained through model calculations.These findings validate the effectiveness of the proposed T_(D24)calculation method presented in this paper as it exhibits minimal deviation during calculation while offering a straightforward computational process capable of accurately determining thermal decomposition runaway characteristic parame⁃ters.
作者 乔德乾 翁仕春 郭子超 饶国宁 QIAO De-qian;WENG Shi-chun;GUO Zi-chao;RAO Guo-ning(Department of Safety Engineering,School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《含能材料》 EI CAS CSCD 北大核心 2024年第3期280-288,共9页 Chinese Journal of Energetic Materials
基金 江苏省基础研究计划(自然科学基金)(BK20200495)。
关键词 微通道 多步分解反应 最大反应速率到达时间 头峰 热分析动力学 数值模拟 microchannel multi⁃step decomposition time to maximum rate under adiabatic condition first peak thermal analysis kinetics numerical simulation
  • 相关文献

参考文献4

二级参考文献51

  • 1江承艳.高含量氟磺胺草醚原药合成[J].农药,2006,45(2):99-101. 被引量:9
  • 2傅献彩,沈文霞,姚天扬.物理化学(第五版).北京:高等教育出版社,2006:430.
  • 3Long, G. T.; Brems, B. A.; Wight, C. A. Thermochim. Acta 2002, 388 (1), 175.
  • 4Batten, J. J. Int. J. Chem. Kinet. 1985, 17 (10), 1085. doi: 10.1002/kin.550171005.
  • 5Li, X. R.; Koseki, H. Thermochim. Acta 2005, 431 (1), 113.
  • 6Stoessel, F. 化工工艺热安全:风险评估与工艺设计. 陈网桦, 彭金华,陈利平, 译.北京:科学出版社, 2009: 56, 271-287.
  • 7Dien, J. M.; Fierz, H.; Stoessel, F.; Killé, G. Chima 1994, 48 (12), 542.
  • 8Gao, H. S.; Chen, L. P.; Chen, W. H.; Bao, S. L. Thermochim. Acta 2013, 569, 134. doi: 10.1016/j.tca.2013.07.017.
  • 9Grewer, T. Thermochim. Acta 1993, 225 (2), 165. doi: 10.1016/0040-6031(93)80185-D.
  • 10Chervina, S.; Bodman, G. T. Process Saf. Prog. 1997, 16 (2), 94. doi: 10.1002/prs.680160211.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部