摘要
为掌握立式储能罐结构的受力特征,基于某30 000 m~3立式热水储能罐项目,依托远程监测技术采集了运行状态下罐壁应力和温度数据,将采集结果与考虑罐底摩擦接触约束建立的有限元模型分析结果进行比较,验证了此有限元模拟方法的合理性;依托实测温度数据,研究了立式储能罐罐壁热力耦合作用下罐壁位移以及应力分布规律。结果表明:罐壁底部和顶部为温度影响敏感区域,温度升高,使其产生压应力;对于环向应力,在底部受温度荷载影响较顶部更显著;而对于竖向应力,影响主要是罐壁底部;温度对罐壁变形影响较大,在空罐时,最大位移位置出现在罐壁最顶端;而满罐时最大变形位置出现在中上部的位置,温度作用大于静水压力对罐壁变形的影响。
In order to grasp the statics characteristics of the vertical energy storage tank structure,based on a 30000 m3 vertical hot water energy storage tank project,relying on remote monitoring technology to collect the tank wall stress and temperature data under operating conditions,the rationality of the finite element simulation method was verified by comparing the collected results with the analysis results of the finite element model established by considering the friction contact constraint of the tank bottom.Based on the measured temperature data,the displacement and stress distribution law of the tank wall under the thermal-mechanical coupling of the vertical energy storage tank wall were studied.The results show that the bottom and top of the tank wall are the sensitive areas of temperature influence,and the temperature increases,which causes compressive stress.For the circumferential stress,the influence of temperature load at the bottom is more significant than that at the top.For the vertical stress,the influence is mainly on the bottom of the tank wall;the temperature has a great influence on the deformation of the tank wall.When the tank is empty,the maximum displacement position appears at the top of the tank wall.When the tank is full,the maximum deformation position appears in the middle and upper part,and the temperature effect is greater than the effect of hydrostatic pressure on the deformation of the tank wall.
作者
李雄彦
魏金刚
薛素铎
LI Xiongyan;WEI Jingang;XUE Suduo(Department of Urban Construction,Beijing University of Technology,Beijing 100124,China)
出处
《建筑结构》
北大核心
2024年第5期92-97,85,共7页
Building Structure
基金
国家自然科学基金项目(51878014、51378031)
北京市自然科学基金项目(8152006)。
关键词
立式储能罐
健康监测
有限元分析
热力耦合
vertical energy storage tank
health monitoring
finite element analysis
thermal-mechanical coupling