期刊文献+

内嵌三角形芯片的矩形腔耦合MIM波导的尖锐Fano共振和传感特性研究

Sharp Fano resonance and sensing characteristics of a rectangular cavity-coupled MIM waveguide embedded with a triangular chip
下载PDF
导出
摘要 微纳传感器是数据收集和数据处理的重要器件之一.文章在波导侧面设计内嵌三角形金属芯片的矩形腔结构,利用时域有限差分方法模拟系统的光谱特性和传感特性,在透射光谱中出现3重Fano共振.根据透射峰的电磁场分布研究结构共振的物理机制,发现矩形腔内的电场方向与内嵌三角形金属结构的局域场方向相同时将形成Fano共振,在此条件下,局域模与腔模相互干涉形成超尖锐Fano共振.改变谐振腔和内嵌芯片的几何参数,得到复合腔的品质因子为405.定量分析结构的折射率传感特性和温度传感特性,得到结构的最大传感灵敏度为2178 nm/RIU,最大FOM*为1.82×10^(6),温度灵敏度为0.67 nm/℃.设计内嵌三角形金属芯片的矩形腔耦合直波导的纳米结构,为将来纳米传感器的研究与发展提供超高Q值的腔体选择. Micro-nano sensors are important devices for data collection and data processing.In this paper,the structure of a rectangular cavity embedded with a triangular metal chip is designed on the side of the waveguide.In addition,the spectral characteristics and sensing applications of the system are simulated by the finite difference time domain method.There are 3-fold Fano resonances appear in the transmission spectrum.Next,we study the physical mechanism of structural resonance based on the electromagnetic field distribution of transmission peaks.It find that Fano resonance occurs when the direction of the electric field in the rectangular cavity is the same as the local field direction of the embedded triangular metal structure.By changing the geometric parameters of the resonant cavity and the embedded chip,the maximum quality factor of the composite cavity is 405.The refractive index sensing properties and temperature sensing properties of the structure are quantitatively analyzed,and the maximum sensing sensitivity of the structure is 2178 nm/RIU,the maximum FOM*is 1.82×10^(6),and the temperature sensitivity is 0.67 nm/℃.The nanostructure of rectangular cavity coupled straight waveguide with embedded triangular metal chip designed in this paper provides ultra-high-Q cavity selection for the research and development of nanosensors in the future.
作者 杨凤英 陈发秀 陈跃刚 YANG Fengying;CHEN Faxiu;CHEN Yuegang(Guizhou Qiannan Institute of Science and Technology,Huishui 550600,Guizhou,China;Guiyang Institute of Information Technology,Guiyang 550025,Guizhou,China;School of Physics,Guizhou University,Guiyang 550025,Guizhou,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期265-275,共11页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11764006) 贵州省高等学校教学内容和课程体系改革项目(2021369) 贵州省教育科学规划项目(2022C017)。
关键词 表面等离子体激元 传感器 谐振腔 波导 surface plasmons sensors resonators waveguides
  • 相关文献

参考文献8

二级参考文献75

  • 1Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser. Nature, 2008, 460(7259): 1110-1112.
  • 2Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7(6): 442-453.
  • 3Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303) 1102-1106.
  • 4MUhlschlegel P, Eisler H J, Martin O J F, et al. Resonant optical antennas. Science, 2005, 308(5728): 1607-1609.
  • 5Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photon, 2011, 5(6): 349-356.
  • 6Hao F, Sonnefraud Y, Dorpe P V, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett, 2008, 8(11): 3983-3988.
  • 7Hentschel M, Saliba M, Vogelgesang R, et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett, 2010, 10(7): 2721-2726.
  • 8Artar A, Yanik A A, Altug H. Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett, 2011, 11(9): 3694-3700.
  • 9Mukherjee S, Sobhani H, Lassiter J B, et al. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett, 2010, 10(7): 2694-2701.
  • 10Yang Z J, Zhang Z S, Zhang W, et al. Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers. Appl Phys Lett, 2010, 96(13): 131113-131115.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部