摘要
文章以天然鳞片石墨为原料,采用改进Hummers方法制备氧化石墨烯(graphene oxide,GO)薄膜,再利用氮离子注入和热处理得到表面改性的氮掺杂还原氧化石墨烯(nitrogen-doped reduced graphene oxide,NrGO)薄膜;利用扫描电子显微镜(scanning electron microscope,SEM)、X射线衍射(X-ray diffraction,XRD)、拉曼(Raman)光谱和X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)表征并系统研究氮离子注入对石墨烯基薄膜表面形貌和微观结构的影响。结果表明:氮离子注入会造成石墨烯基薄膜表面层内碳原子的缺失和氮原子的替代掺杂,从而在NrGO薄膜表面层内实现氮掺杂并产生纳米级孔洞;氮掺杂氧化石墨烯(nitrogen-doped graphene oxide,NGO)薄膜表面层氮掺杂量(质量分数)高达10.86%,热处理后的NrGO薄膜表面层氮掺杂量(质量分数)可达9.90%;I-V测试发现,氮离子注入和热处理对石墨烯基薄膜的电输运性能也产生显著影响。
In this paper,graphene oxide(GO)films were synthesized from natural flake graphite by modified Hummers method,and then nitrogen ions implantation and annealing were combined to prepare nitrogen-doped reduced graphene oxide(NrGO)films.The effects of nitrogen ions implantation on the surface morphology and microstructure of graphene-based films were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD),Raman spectroscopy and X-ray photoelectron spectroscopy(XPS)characterization.The results showed that under the bombardment of nitrogen ions,carbon atoms were lost and nitrogen atoms were substituted for doping.Atoms migration and rearrangement on the surface of graphene-based films led to the formation of nitrogen doping and nanoscale pores on the surface layers of NrGO films.The nitrogen doping content in the surface layers of nitrogen-doped graphene oxide(NGO)films was up to 10.86%,and after annealing the nitrogen content in the surface layers of NrGO films was also up to 9.90%.In addition,I-V tests found that nitrogen ions implantation and thermal treatment also had a significant effect on the electrical transport property of the graphene-based films.
作者
牛亮
杨远俊
杨庆庆
王伟
李强
NIU Liang;YANG Yuanjun;YANG Qingqing;WANG Wei;LI Qiang(School of Physics,Hefei University of Technology,Hefei 230601,China)
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2024年第3期428-432,共5页
Journal of Hefei University of Technology:Natural Science
基金
中国科学技术大学合肥微尺度物质科学国家研究中心开发课题资助项目(KF2020002)。
关键词
石墨烯基薄膜
氮掺杂
离子注入
表面改性
电输运性能
graphene-based films
nitrogen doping
ions implantation
surface modification
electrical transport property