期刊文献+

疫苗接种效应影响下的SVEIR模型的动力学分析

Dynamic analysis of SVEIR model under the influence ofvaccination effect
下载PDF
导出
摘要 [目的]由于流行病会随着时间的变化而发生变化,因此,结合现实情况,研究一种受接种疫苗比率和免疫率影响的带时变性质的SVEIR疾病传播模型的平衡点的动力学性质.[方法]首先,通过构建动力学模型研究平衡点的存在性;其次,利用下一代矩阵法得出模型的基本再生数R0和有效再生数Re;最后,通过Lyapunov定理和Routh-Hurwitz判别方法对病毒的基本再生数和有效再生数进行稳定性分析.[结果]通过python数值仿真实验,得出当R0<1时,疾病会消失;当R0>1时,流行病会转化为地方流行病;当R0=1时,系统会出现临界分岔现象.[结论]接种疫苗是疾病防控的关键措施之一.R0的取值决定流行病的演化结果. [Objective]Generally,because epidemic will change with time,the dynamics of the equilibrium point of a time-varying SVEIR disease transmission model affected by the vaccination rate and immunization rate is studied by combining with the reality.[Methods]First,the existence of equilibrium point was studied by constructing a dynamics model;Second,the basic regeneration numbers R 0 and effective regeneration numbers R e are obtained by using the next generation matrix method;Finally,the stability of the basic regeneration numbers and effective regeneration numbers were analyzed by using Lyapunov theorem and Routh-Hurwitz discrimination method.[Results]Through python numerical simulation experiment,it is obtained that when R 0<1,the disease will disappear;When R 0>1,the epidemic will transform into a local epidemic;When R 0=1,the system will have a critical bifurcation.[Conclusions]Vaccination is one of the key measures of disease prevention and control.The value of vaccine R 0 determines the evolution of epidemic.
作者 王海玲 翁智峰 WANG Hailing;WENG Zhifeng(Xiamen University Tan Kah Kee College,School of Information Science and Technology,Zhangzhou 363105,China;Huaqiao University,School of Mathematics and Science,Quanzhou 362021,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期329-334,共6页 Journal of Xiamen University:Natural Science
基金 福建省教育教学改革研究项目(FBJG20170154) 福建省高校产学合作项目(2018H6018) 教育部产学协同育人项目(JGH2019003,JGH2019023) 漳州市自然科学基金(ZZ2018J26)。
关键词 疫苗接种效应 时滞 SVEIR模型 稳定性 vaccination effect delay SVEIR model stability
  • 相关文献

参考文献12

二级参考文献61

  • 1程荣福,蔡淑云.一个具功能性反应的微分生态系统的定性分析[J].东北师大学报(自然科学版),2005,37(1):11-15. 被引量:21
  • 2龚建华,周洁萍,徐珊,王卫红.SARS传播动力学模型及其多智能体模拟研究[J].遥感学报,2006,10(6):829-835. 被引量:18
  • 3孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 4Driessche P V D, Watmough J. Reproduction numbersand sub-threshold endemic equilibria for compartmentalmodels of disease transmission[J]. Mathematical Biosci-ences, 2002, 180(1):29-48.
  • 5Feng Zhi-lan, Velasco-Hemandez J X. Competitive exclu-sion in a vector-host model for the dengue fever[J]. Jour-nal of Mathematical Biology, 1997,35(5): 523-544.
  • 6Fulford G R, Roberts M G, Heesterbeek JAP. The meta-population dynamics of an infectious disease: tuberculo-sis in possums[J]. Theoretical Population Biology, 2002,61(1): 15-29.
  • 7Hyman J M, Li J, Stanley E A. The differential infectivityand staged progression models for the transmission ofHIV[J]. Mathematical Biosciences, 2010, 155(2): 77-109.
  • 8Gumel A B,Ruan Shi-gui, Day T, et al. Modelling strate-gies for controlling SARS outbreaks [J]. Proceedings ofthe Royal Society B: Biological Sciences, 2004, 271(1554): 2223-2232.
  • 9Ruan Shi- gui, Wang Wen- di, Levin S A. The effect ofglobal travel on the spread of SARS[J]. MathematicalBiosciences & Engineering Mbe, 2006,3(1): 205-218.
  • 10Wang Wen-di, Zhao Xiao-qiang. Threshold dynamics forcompartmental epidemic models in periodic environ-ments[J]. Journal of Dynamics & Differential Equations,2008,20(3): 699-717.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部