期刊文献+

一种奇异值分解与子空间加权联合的改进MUSIC算法

An improved MUSIC algorithm based on singular value decomposition and subspace weighting
下载PDF
导出
摘要 在低信噪比、小快拍数等非理想条件下,经典DOA估计算法对邻近目标的分辨率严重下降,甚至失去分辨能力。针对这一问题,提出了一种将重构的接收信号协方差矩阵进行奇异值分解并与改进的加权子空间方法相结合的改进算法。该算法充分利用互相关信息构建新的接收信号协方差矩阵,并对噪声子空间信息采用新的校正方法,对噪声特征值进行改造,之后对噪声子空间进行加权,最后与信号子空间加权技术相联合。仿真实验证明,改进算法在低信噪比和小快拍数条件下可以分辨间隔4°的相邻目标,统计分析表明该算法的分辨率明显优于经典MUSIC算法。 Under non-ideal conditions such as low signal-to-noise ratio and small number of snapshots,the classical DOA estimation algorithm seriously degrades the resolution of adjacent targets and even loses the resolution.To solve this problem,an improved algorithm is proposed that combines the singular value decomposition of the reconstructed received signal covariance matrix with the improved weighted subspace method.The algorithm makes full use of cross-correlation information to construct a new received signal covariance matrix,and uses a new correction method for noise subspace information to transform the noise eigenvalues.Then the noise subspace is weighted,and finally combined with the signal subspace weighting technology.Simulation results show that the improved algorithm can distinguish adjacent targets with an interval of 4°under the conditions of low signal-to-noise ratio and small snapshots.Statistical analysis shows that the resolution of the proposed algorithm is significantly better than that of the classical MUSIC algorithm.
作者 石依山 尚尚 乔铁柱 刘强 祝健 Shi Yishan;Shang Shang;Qiao Tiezhu;Liu Qiang;Zhu Jian(Ocean College,Jiangsu University of Science and Technology,Zhenjiang 212003,Jiangsu,China)
出处 《航天电子对抗》 2024年第1期44-49,共6页 Aerospace Electronic Warfare
基金 国家自然科学基金项目(61801196)。
关键词 波达方向估计 MUSIC算法 奇异值分解 噪声子空间 高分辨率 direction of arrival estimation MUSIC algorithm singular value decomposition noise subspace high resolution
  • 相关文献

参考文献9

二级参考文献44

  • 1刘剑,黄知涛,周一宇.一种新的共轭增强MUSIC测向算法(英文)[J].宇航学报,2007,28(5):1309-1313. 被引量:4
  • 2程林辉,钟珞.求解多峰函数优化问题的并行免疫遗传算法[J].微电子学与计算机,2015,32(5):117-121. 被引量:10
  • 3Johnson D H. The application of spectral estimation to bearing estimation problems [J]. Proc. IEEE,1982,70:1018 - 1028.
  • 4Barabell A J, Capon J. Performance comparison of superresolution array processing algorithm[R]. Tech. Rep. TST - 72, Lincoln Lab. , MIT, 1984.
  • 5Stoica P, Nehorai A. Perfomance comparison of subspace rotation and MUSIC methods for direction estimation[J]. IEEE Trans. on SP ,1991,39(2) :446 - 453.
  • 6Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing: analysis and comparison[J]. IEEE Trans. on SP, 1993,41 (2) :788 - 803.
  • 7Ren Q S,Willis A J. Fast root-MUSIC algorithm[J]. IEE Electronics Letters, 1997,33(6) :450 - 451.
  • 8Schmidt R O. Multiple emitter location and signal parameter estimation[J] IEEE Trans. on AP ,1986,34(3):276 - 280.
  • 9Li Bai, Peng C Y, Biswas S. Association of DOA Estimation from Two ULAs [ J ]. IEEE Transactions on Instrumentation and Measurement,2008,57(6) : 1094 - 1101.
  • 10Zooghby A H, Christotodouiou C G. Performance of Rachal - Basis Function Networks for Direction of Arrival Estimation with Antenna Arrays[ J]. IEEE Transactions on Antennas and Propagation, 1997, 45(11) : 1611 - 1617.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部