摘要
目前航空航天、核物理、微电子、光电子和半导体等国家战略领域高性能装备的性能需求日渐严苛,核心零部件的制造精度必须迈进原子级水平,亟需研究原子精度的高性能制造新原理和新方法。本文归纳并提出了目前迫切需求的原子级表面精度、原子级结构精度、原子级损伤控制以及原子级特征尺寸结构创成四大原子精度制造核心能力,从能场辅助原子级切削、多能场辅助原子有序排布、表面能弱化原子精度材料去除以及超光学衍射极限的原子精度制造四大方向进行系统梳理,介绍了面向不同应用场景的原子精度制造新原理和新方法的研究现状,并概述了各类方法的优势和缺点,从中提炼出多能场耦合条件下的能量和原子间相互作用机理这一关键科学问题,并从四大方向上对未来我国原子级制造的基础研究提出了建议。
At present,the performance requirements of high-performance equipment in national strategic areas such as aerospace,nuclear physics,microelectronics,optoelectronics,and semiconductors are becoming increasingly stringent.The manufacturing accuracy of core components must reach the atomic level.However,there is still a large gap between our country and developed countries'manufacturing accuracy of high-performance parts such as nuclear fusion ignition targets,high power laser optics,optical waveguide structures,and thin-walled brittle micro-resonators.It is urgent to study new mechanisms and methods for high-performance manufacturing with atomic precision.This article systematically sorts out the four major directions of atomic precision manufacturing assisted by energy fields,multi-energy fieldassisted atom rearrangement,surface energy weakening atomic precision material removal,and atomic structure processing beyond optical diffraction limit,and introduces the research status of new principles and methods for atomic precision manufacturing in different application scenarios.For the key scientific problem of the mechanism of interatomic interaction and shape-performance tuning under multi-energy field coupling conditions,research suggestions are proposed in the four directions.
作者
张振宇
李琳
巨阳
陈云飞
许剑锋
闫永达
徐飞飞
周天丰
段辉高
黄志权
徐凯臣
朱吴乐
彭小强
邓辉
司伟
王吉
王金石
吕鹏
冯俊元
Zhenyu Zhang;Lin Li;Yang Ju;Yunfei Chen;Jianfeng Xu;Yongda Yan;Feifei Xu;Tianfeng Zhou;Huigao Duan;Zhiquan Huang;Kaichen Xu;Wule Zhu;Xiaoqiang Peng;Hui Deng;Wei Si;Ji Wang;Jinshi Wang;Peng Lyu;Junyuan Feng(State Key Laboratory of High-performance Precision Manufacturing,Dalian University of Technology,Dalian 116024;Research Centre for Laser Ertreme Manufacturing,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201;School of Mechanical Engineering,Zhejiang University,Hangzhou 310027;School of Mechanical Engineering,Southeast University,Nanjing 211189;State Key Laboratory of Digital Manufacturing Equipment and Technology,School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074;Center for Precision Engineering,Harbin Institute of Technology,Harbin 150006;Institute of Mechanical Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621999;School of Mechanical and Vehicle Engineering,Beijing Institute of Technology,Beijing 100081;College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082;Department of Engineering and Materials Sciences,National Natural Science Foundation of China,Beijing 100085;School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024;School of Intelligent Science and Technology,National University of Defense Technology,Changsha 410003;Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen 518055;School of Precision Instrument and Opto-electronics Engineering,Tianjin University,Tianjin 300072;School of Mechanical Engineering,Hangzhou Dianzi University,Hangzhou 310018)
出处
《中国科学基金》
CSSCI
CSCD
北大核心
2024年第1期146-158,共13页
Bulletin of National Natural Science Foundation of China
关键词
原子精度制造
原子级切削
原子有序排布
表面能弱化加工
超光学衍射极限加工
atomic precision manufacturing
atomic scale cutting
atom rearrangement
surface energy weakening processing
beyond optical diffraction limit processing technique