摘要
The giant freshwater prawn Macrobrachium rosenbergii distributed from tropical to subtropical regions,is a warm-water species,and its survival temperature is 14-35°C,which greatly limits its culture cycle and culture area in China.Therefore,it is urgent to cultivate a new high quality,high yield variety with improved cold-resistance,but the genetic parameters for cold-resistance traits are unknown in M.rosenbergii.In this study,the cold-resistance of adult M.rosenbergii populations was tested using the indoor artificial cooling method.Individuals were selected from 139 families of Shufeng G3 generation and cultured for 200 days.A linear mixed model was constructed by ASReml-R to evaluate the genetic parameters of the cold-resistance trait(cooling degree hours,CDH)and growth traits(body weight,BW,and body length,BL)based on the restricted maximum likelihood(REML)method.The results show that the heritability of CDH was low(0.12±0.05),while the growth traits(BW and BL)had low to moderate heritability,with 0.20±0.06 for BW and 0.06±0.04 for BL.The phenotypic and genetic correlation between BW and BL was significantly positive,but significantly negative phenotypic and genetic correlations were detected between CDH and BW and between CDH and BL.Furthermore,the analysis of the differences between cold-resistance and phenotypic traits showed that the female reproductive status,exoskeleton hardness and claw number of adult prawns had a great influence on the cold-resistance of M.rosenbergii(P<0.05),indicating that adults with claws and hard exoskeletons are preferred as parents in subsequent breeding selection.The present results can be attributed to the selection and breeding of a new cold-resistant variety of M.rosenbergii.
基金
Supported by the Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural(Aquaculture)Varieties(No.2021C02069-4-3)
the Major Research&Development Program(Modern Agriculture)of Jiangsu Province(No.BE2019352)
the Earmarked Fund for the China Agriculture Research System(No.CARS-48)
the Innovation Project of Postgraduate Scientific Research in Huzhou University in 2022(No.2022KYCX63)。