期刊文献+

城市轨道交通车体垂向振动对弓网受流性能的影响

Influence of Urban Rail Transit Carbody Vertical Vibration on Pantograph-catenary Current Collection Performance
下载PDF
导出
摘要 [目的]既有对接触网系统动力学仿真的研究大多基于受电弓底座仅有纵向自由度的假设,忽略了轮轨激励引起的车体垂向振动对弓网受流性能的影响,需要将车辆-受电弓-接触网(以下简称“车-弓-网”)作为一个整体予以研究。[方法]分别建立了刚性接触网、柔性接触网两种接触网类型下的弓网耦合动力学模型及车-弓-网多体动力学模型。在案例线路上进行了弓网动态受流试验,对所建的刚性接触网车-弓-网多体动力学模型的计算结果进行了可行性验证。基于列车运行速度为80 km/h、90 km/h、100 km/h、110 km/h及120 km/h五种速度工况,选取了其中两种速度工况对刚性接触网受电弓绝缘子底座处的垂向动态响应进行了分析,并在五种速度工况下分别对两种接触网类型下弓网模型、车-弓-网模型的各动态响应参数进行了对比分析。[结果及结论]所建车-弓-网多体动力学模型的模拟计算结果是合理的。车体振动会对弓网受流性能产生一定影响:柔性接触网下车体垂向振动对弓网受流性能影响很小,可不予考虑;刚性接触网下,与未考虑车体垂向振动的弓网模型相比,考虑了车体垂向振动的车-弓-网模型计算得到的弓网接触压力统计最小值、弓头最大抬升位移均随列车运行速度的增加而增加,弓网接触压力统计最小值变化率的最大值为24.7%,弓头最大抬升位移变化率的最大值为4.2%。 [Objective]Most existing studies on catenary system dynamics simulation are based on the assumption that the pantograph base has only longitudinal degrees of freedom,neglecting the influence of carbody vertical vibration induced by wheel-rail excitation on PC(pantograph-catenary)current collection performance.It is necessary to study the vehicle-pantograph-catenary system(hereinafter referred to as VPC)as a whole.[Method]Models of PC coupling dynamics and VPC multi-body dynamics are established for both rigid and flexible catenary types.Dynamic PC current collection tests are conducted on a case track,and the feasibility of the calculated results of rigid catenary VPC multi-body dynamics model is verified.Based on train speeds of 80 km/h,90 km/h,100 km/h,110 km/h,and 120 km/h,two speed conditions are selected for the analysis of the vertical dynamic responses at the base of rigid catenary pantograph insulator.Comparative analysis of various dynamic response parameters of the pantograph models and VPC models for both catenary types are conducted under the above five speed conditions.[Result&Conclusion]The simulation calculation results of the established VPC multi-body dynamics model are reasonable.Carbody vibration has a certain influence on the pantograph current collection performance.Under flexible catenary,carbody vertical vibration has little impact on PC current collection performance,thus may be disregarded.Under rigid catenary,compared to the pantograph model without considering carbody vertical vibration,the PC statistically minimum contact pressure and the pantograph-head maximum lifting displacement calculated by the VPC model considering carbody vertical vibration increase with the increase of train operating speed.The maximum change rate of the PC statistically minimum contact pressure is 24.7%,and the maximum change rate of pantograph-head maximum lifting displacement is 4.2%.
作者 董晓 周宁 张欣 魏海飞 DONG Xiao;ZHOU Ning;ZHANG Xin;WEI Haifei(CHN Energy Railway Equipment Co.,Ltd.,100011,Beijing,China;State Key Laboratory of Traction Power,Southwest Jiaotong University,610031,Chengdu,China)
出处 《城市轨道交通研究》 北大核心 2024年第4期22-27,32,共7页 Urban Mass Transit
基金 国家自然科学基金项目(52072319) 四川省科技计划重点研发项目(2021YFG0066) 国能铁路装备有限责任公司科研项目(SHGF-17-54) 中铁二院工程集团有限责任公司科研项目(科2019-32)。
关键词 城市轨道交通 供电系统 车-弓-网关系 弓网受流性能 车体垂向振动 多体动力学模型 urban rail transit power supply system vehicle-pantograph-catenary relationship pantograph-catenary current collection performance carbody vertical vibration multi-body dynamics model
  • 相关文献

参考文献5

二级参考文献37

  • 1孙海东.刚性悬挂接触网在城市轨道交通牵引供电系统中的应用[J].铁路技术创新,2011(1):35-38. 被引量:8
  • 2李丰良,李敏,唐建湘.受电弓的建模与参数测试[J].中南大学学报(自然科学版),2006,37(1):194-199. 被引量:18
  • 3缪炳荣,肖守讷,金鼎昌.应用Simpack对复杂机车多体系统建模与分析方法的研究[J].机械科学与技术,2006,25(7):813-816. 被引量:27
  • 4张卫华.准高速接触网动态性能的研究[J].西南交通大学学报,1997,32(2):187-192. 被引量:19
  • 5铁道车辆动力学性能评定和试验鉴定规范[S].GB5599-85,1985.
  • 6WU T X, BRENNAN M J. Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics I J]. Journal of Sound and Vibration, 1999, 219 (3) : 483-502.
  • 7ARNOLD M, SIMEON B. Pantograph and catenary dynamics: a benchmark problem and its numerical solution[J]. Applied Numerical Mathematics, 2000, 34 : 345-362.
  • 8PARKA T J, HANB C S, JANGC J H. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[ J ]. Journal of Sound and Vibration, 2003, 266 : 235-260.
  • 9LOPEZ-GARCIA O, CARNICEROA A, TORRESB V. Computation of the initial equilibrium of railway overheads based on the catenary equation[J1. Engineering Structures, 2006, 28: 1387-1394.
  • 10METRIKINE A V, BOSCH A L. Dynamic response of a two-level catenary to a moving load[J]. Journal of Sound and Vibration, 2006, 292: 676-693.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部