期刊文献+

椭圆曲线y^(2)=(x-2)(x^(2)+2x+m)的整数点

Integral Points on Elliptic Curves y^(2)=(x-2)(x^(2)+2x+m)
下载PDF
导出
摘要 设p是满足p≡5(mod12)的奇素数,q=p-3/2为奇素数或1,m为正整数且m=3p-8。运用初等数论的方法及四次丢番图方程的相关结果,给出了椭圆曲线y^(2)=(x-2)(x^(2)+2x+m)的所有整数点(x,y)。 Let p was an odd prime satisfied p≡5(mod12),q=p-3/2 was odd prime or 1,m was a positive integer with m=3p-8.Using the elementary number theory methods and relevant results of the quadratic Diophantine equations,all integral points(x,y)on the elliptic curve y^(2)=(x-2)(x^(2)+2x+m)were given.
作者 曹雅丽 杨海 李瑞阳 CAO Yali;YANG Hai;LI Ruiyang(School of Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《沈阳大学学报(自然科学版)》 CAS 2024年第2期179-184,共6页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11226038,11371012) 陕西省自然科学基金资助项目(2021JM443)。
关键词 椭圆曲线 同余 整数点 勒让德符号 四次丢番图方程 elliptic curve congruence integral point Legendre symbol quartic Diophantine equation
  • 相关文献

参考文献16

二级参考文献48

  • 1Silverman J. H., The Arithmetic of Elliptic Curves, New York: Springer Verlag, 1999.
  • 2Zhu H. L., Chen J. H., A note on two diophantine equation y^2 = nx(x^2 ± 1), Acta Mathematica Sinica, Chinese Series, 2007, 50(5): 1071-1074.
  • 3Zagier D., Large integral point on elliptic curves, Math Comp., 1987, 48(177): 425-536.
  • 4Zhu H. L., Chen J. H., Integral points on y^2=x^3 + 27x - 62, J. Math. Study, 2009, 42(2): 117-125.
  • 5Min S. H., Yah S. J., Elementary Number Theory, Bcijing: Higher Education Press, 2003, 163-166.
  • 6Walsh G., A note on a theorem of Ljunggren and the diophantine equations x^2 - kxy^2 + y^4 = 1 or 4, Arch. Math., 1999, 73(2): 119-125.
  • 7Walker D. T., On the diophantine equation mX^2 - nY^2=1, Amer, Math. Monthly, 1967, 74(6): 504-513.
  • 8Zagier D. Lager integral point on elliptic curves [J]. MathComp,1987,48:425-436.
  • 9Zhu H L. Chen J H. Integral point on y2 — x3 27x~ 62[J]. J Math Study,2009,42(2) :117-125.
  • 10Wu H M. Points on the elliptic curves y2 = x3 +27x —62[J].J Acta Mathematica Sinica,2010,53(1) :205-208.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部