期刊文献+

基于数据挖掘和聚类分析的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on data mining andcluster analysis
下载PDF
导出
摘要 为了提高推荐系统的可扩展性和用户满意度,设计基于数据挖掘和聚类分析的协同过滤推荐算法。基于双向关联规则原理,构建标签资源矩阵,利用K-means聚类算法对标签进行聚类。结合用户偏好标签,算法能计算标签与资源的紧密程度,实现基本推荐。通过标签计算用户与资源的兴趣度,实现个性化推荐。将基本推荐和个性化推荐线性组合,得出最终结果。实验表明,该算法不仅能保持数据集的平衡状态,准确性也高。通过聚类捕捉更复杂的用户兴趣模式,显著提高了推荐结果的命中率和NDCG值,为用户提供更符合个性化需求的资源。 In order to improve the scalability and user satisfaction of recommendation systems,a collaborative filtering recommendation algorithm based on data mining and clustering analysis is designed.Based on the principle of bidirectional association rules,construct a label resource matrix and use K-means clustering algorithm to cluster labels.By combining user preference tags,the algorithm can calculate the degree of tightness between tags and resources,and achieve basic recommendations.Calculate user and resource interests through tags to achieve personalized recommendations.Combine basic recommendations and personalized recommendations linearly to obtain the final result.The experiment shows that the algorithm can not only maintain the balance of the dataset,but also has high accuracy.By capturing more complex user interest patterns through clustering,the hit rate and NDCG value of recommendation results are significantly improved,providing users with resources that better meet personalized needs.
作者 何岫钰 HE Xiuyu(School of Business,Beijing Language and Culture University,Beijing 100083,China)
出处 《电子设计工程》 2024年第9期47-50,共4页 Electronic Design Engineering
关键词 数据挖掘 聚类分析 协同过滤推荐 标签相似度 偏好度 个性化推荐 data mining cluster analysis collaborative filtering recommendation label similarity pref-erence degree personalized recommendation
  • 相关文献

参考文献15

二级参考文献111

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部