期刊文献+

自适应融合RGB图像特征的稀疏深度修复

Adaptive Fusion of RGB Image Features for Sparse Depth Completion
下载PDF
导出
摘要 深度修复的目的是从稀疏深度图像中恢复出稠密的深度图像。现有方法通常是以稀疏深度图像及其对应的RGB图像为输入,通过1个卷积神经网络恢复出密集深度图像。然而,普通的卷积层在处理稀疏且不规则的深度信息时有较大的局限性,同时,RGB图像特征和深度图像特征属于不同的模态。针对这些问题,文章提出了自适应稀疏不变模块,根据输入像素的有效性来处理稀疏深度,并提出了结合注意力机制的多尺度特征融合模块,在关注有效特征的同时,抑制不必要的特征,进一步提高深度修复性能。文章在NYUv2数据集上进行了一系列实验,实验结果表明了所提出算法和模块的有效性。 The purpose of depth completion is to restore dense depth images from sparse depth images.Existing methods usually take sparse depth images and their corresponding RGB images as input and restore dense depth images through a convolutional neural network.However,ordinary convolutional layers have large limitations in dealing with sparse and irregular depth information,while RGB image features and depth image features belong to different modalities.To address these problems,an adaptive sparse invariant module to handle sparse depths according to the validity of the input pixels is proposed.The multi-scale features fusion incorporating attention mechanism is also proposed to further improve the depth completion performance by suppressing unnecessary features while focusing on effective features.A series of experiments are conducted on the NYUv2 dataset,and the experimental results demonstrate the effectiveness of the proposed algorithm and module.
作者 周恒 李滔 孙明明 武丹丹 ZHOU Heng;LI Tao;SUN Mingming;WU Dandan(School of Electrical and Electronic Information,Xihua University,Chengdu Sichuan 610039,China)
出处 《海军航空大学学报》 2024年第2期241-248,共8页 Journal of Naval Aviation University
关键词 深度图像修复 特征融合 室内场景 注意力机制 depth completion feature fusion indoor scenes attention mechanism
  • 相关文献

参考文献2

二级参考文献12

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部