摘要
星载微波部件的微放电效应是导致航天器谐振类设备失谐、噪声电平抬高、输出功率下降,甚至影响通信信道乃至整个微波传输系统彻底失效的瓶颈问题之一。在设计阶段对星载微波部件微放电效应进行精准的评估是减少地面反复试验,避免延误研制周期的重要手段。为了进一步改善现有蒙特卡洛方法的计算准确度问题,文中提出了一种精度更高的计算星载微波部件微放电阈值的蒙特卡罗方法,该方法对参与微放电过程的初始电子进行了动态调整,采用四阶龙格-库塔法推进微波部件中电子的运动轨迹,基于Furman模型描述电子与微波表面相互作用的二次电子发射过程,按照碰撞电子产生的实际二次电子个数及对应能量参与碰撞时刻后的微放电过程,该多粒子-多碰撞过程更加客观、准确地表征了微放电效应发生的物理过程。以平板传输线和同轴传输线为例,文中所提出的方法相对于已有的蒙特卡罗方法计算精度显著提升,同时计算效率优于商用CST的粒子模拟结果。
The multipactor effect is one of the bottleneck problems that seriously affect the performance and safety of satellite-borne microwave components.Evaluating the multipactor risk of space-borne microwave components in the design phase is an effective means to reduce repeated design and avoid long-term ground tests.In order to solve the precision problem of the existing Monte Carlo method that the multipactor process is represented by a single electron or a very small number of electrons in the initial phase,and only one electron is emitted after each collision,an effective multi-particle and multi-collision Monte Carlo method is proposed.Considering the random nature of initial electrons,the initial energies,angles and phases are randomized in the method,and multiple initial electrons with statistical effects participate in the multipactor initial phase.Meanwhile,the trajectories of the electrons in the microwave component are computed with the fourth-order Runge-Kutta method,and the secondary electron emission processes are described with the Furman model.After the electrons collide with the surface of the microwave component,secondary electrons satisfying the statistical rules of Furman model are emitted,and all newly generated secondary electrons will participate in the multipactor process after the collision.This kind of multi-particle and multi-collision process can more objectively and accurately characterize the physical process of multipactor effect.As an example,the multipactor in two parallel plates transmission line and coaxial transmission line is investigated with the proposed method,the existing Monte Carlo method,and particle-in-cell(PIC)method separately.The results show that,with the results of PIC method of commercial CST software as a reference,the proposed method is more accurate than the existing Monte Carlo method,and at the same time,the calculation efficiency is better than that of the PIC method of CST.
作者
张娜
曹猛
王瑞
白春江
崔万照
ZHANG Na;CAO Meng;WANG Rui;BAI Chunjiang;CUI Wanzhao(National Key Laboratory of Science and Technology on Space Microwave,China Academy of Space Technology(Xi’an),Xi’an 710100,China;Key Laboratory for Physical Electron and Devices of Ministry of Education,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第4期1752-1759,共8页
High Voltage Engineering
基金
国家自然科学基金(62101434)。
关键词
微放电
二次电子发射
蒙特卡罗方法
阈值
微波部件
multipactor
secondary electron emission
Monte Carlo method
threshold
microwave component