摘要
软体机器人受材料性质和驱动原理等方面的限制,难以提升运动性能与承载能力。为此,本文提出一种基于双稳态驱动器的气动软体四足机器人。首先,设计了一种由刚性连杆、软体驱动器和弹簧3部分组成的双稳态软体驱动器。驱动器利用弹簧进行储能,通过压缩空气的驱动,可在2种稳定状态之间快速跳变。推导出驱动器的理论能量模型并对样机进行测试,试验测得双稳态软体驱动器的跳变运动时间为60~100 ms,其末端输出力是同驱动条件下软体驱动器的2~4倍。然后,以该驱动器为基础设计了一种四足机器人,并对机器人的控制方案和运动步态进行分析。最后,搭建气动控制回路对四足机器人样机的性能进行测试。研究结果表明,该样机在一个运动周期内可爬行125 mm或转向15°,平均爬行速度为158.62 mm/s(1.11倍体长/秒),最高瞬时速度达396.62 mm/s(2.83倍体长/秒)。此外,该机器人可承载400 g负载,相当于自身质量的1.08倍,展现出了良好的运动性能与承载能力。
Due to limitations in material properties and driving principles of soft robots,it is difficult to improve their motion performance and load-carrying capacity.To address this issue,a pneumatic soft quadruped robot based on a bistable actuator is proposed.Firstly,a bistable soft actuator composed of rigid links,soft actuators and springs is designed.The actuator can utilize springs for energy storage and quickly jump between two stable states under the drive of compressed air.The theoretical energy model of the actuator is derived,and the prototype is tested.The test results show that the jump motion time of the bistable soft actuator is 60∼100 ms,and the end output force is 2∼4 times that of the soft actuator under the same driving conditions.Then,a quadruped robot based on this actuator is designed,and the control scheme and motion gait of the robot are analyzed.Finally,a pneumatic control circuit is constructed to test the performance of the quadruped robot prototype.The research results demonstrate that the prototype can creep 125 mm or turn 15° in one motion cycle,with an average creeping speed of 158.62 mm/s(1.11 times body length/s)and a peak instantaneous speed of 396.62 mm/s(2.83 times body length/s).In addition,the robot can carry a load of 400 g,equivalent to 1.08 times its own mass,demonstrating good motion performance and load-carrying capacity.
作者
李兴旺
滕燕
徐迎
LI Xingwang;TENG Yan;XU Ying(College of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处
《机器人》
EI
CSCD
北大核心
2024年第3期294-304,共11页
Robot
关键词
双稳态
软体驱动器
仿生
四足机器人
bistable state
soft actuator
biomimetic
quadruped robot