期刊文献+

基于PSO优化小波神经网络的无人机动力系统故障诊断模型 被引量:1

UAV power based on PSO optimized wavelet neural network system fault diagnosis model
下载PDF
导出
摘要 针对传统小波神经网络对无人机动力系统的故障信号降噪和识别能力差以及网络收敛速度慢、训练精度不高的问题,构建了基于改进粒子群算法(PSO)优化小波神经网络的无人机动力系统故障诊断模型。该模型运用软、硬阈值函数组合改进的新阈值函数和改进PSO优化小波神经网络的方式,克服重构信号不连续或严重失真的问题,优化了小波神经网络初始权值和阈值,使模型能够实现快速、准确分析和识别故障类型,具有较好的故障预测和诊断能力。本文中通过对比不同阈值函数的降噪能力和PSO、GA、ACO对小波神经网络的改进效果,比较BP神经网络、传统小波神经网络、PSO优化小波神经网络的故障诊断预测效果,验证了本文中构建的PSO优化小波神经网络故障诊断模型远优于其他对比模型,具有故障识别和降噪能力强、收敛速度快、训练精度高的优点,在无人机动力系统的故障诊断领域,具有较好的可行性和有效性。 Aiming at the problems of poor noise reduction and recognition ability of traditional wavelet neural network for fault signals of UAV power system and slow convergence speed and low training accuracy of the network,a fault diagnosis model of UAV power system based on improved particle swarm algorithm(PSO)optimized wavelet neural network is constructed.The model uses a combination of soft and hard threshold functions improved new threshold functions and improved PSO optimized wavelet neural network to overcome the problem of reconstructed signal discontinuity or severe distortion and optimize the initial weights and thresholds of the wavelet neural network,so that the model can achieve fast and accurate analysis and identification of fault types with better fault prediction and diagnosis capability.In this paper,by comparing the noise reduction ability of different threshold functions and the improvement effect of PSO,GA and ACO on wavelet neural network,and comparing the fault diagnosis prediction effect of BP neural network,traditional wavelet neural network and PSO optimized wavelet neural network,it is verified that the fault diagnosis model of PSO optimized wavelet neural network constructed in this paper is much better than other comparison models,with strong fault identification and noise reduction ability.It has the advantages of high fault identification and noise reduction ability,fast convergence speed and high training accuracy,and has good feasibility and effectiveness in the field of fault diagnosis of UAV power system.
作者 沈延安 杨克泉 陈强 SHEN Yan’an;YANG Kequan;CHEN Qiang(Army Artillery and Air Defense Academy,Hefei 230031,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期168-175,共8页 Journal of Ordnance Equipment Engineering
关键词 无人机 动力系统 PSO 小波神经网络 故障诊断 UAV power system improved PSO wavelet neural network fault diagnosis
  • 相关文献

参考文献17

二级参考文献135

共引文献137

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部