期刊文献+

基于机器学习预测模型探究薄型子宫内膜患者接受IVF/ICSI-ET治疗的早期流产风险因素

Risk factors for early miscarriage in patients with thin endometrium receivingin vitro fertilization/intracytoplasmic sperm injection-embryo transfer:a studybased on machine learning-based predictive modeling
原文传递
导出
摘要 目的:基于多种机器学习方法,探讨薄子宫内膜患者在新鲜胚胎移植中发生早期流产的影响因素,并建立预测模型,为预防薄子宫内膜患者在进行新鲜胚胎移植中发生早期流产提供合理的指导思路。方法:纳入了首次进行新鲜胚胎移植的薄子宫内膜患者1153例,通过LASSO回归和随机森林递归特征消除(recursive feature elimination,RFE)筛选特征,建立6种机器学习模型,通过交叉验证、准确度、敏感性、召回率、f1值、ROC曲线下面积及校准曲线比较不同模型的性能。SHAP图用于解释影响早期流产的因素。结果:通过LASSO回归和随机森林RFE筛选出29个特征变量纳入六种机器学习模型,其中多层感知机模型对早期流产的区分度最佳,ROC曲线下面积为0.803(95%CI=0.772~0.834)。随机森林、XGBoost和AdaBoost模型的ROC曲线下面积都高于0.7。结论:开发了薄子宫内膜患者在新鲜胚胎移植中是否发生早期流产的机器学习预测模型,各种评价指标的验证表明该模型的性能良好,有助于临床医生对该人群患者的早期诊断,为未来改善早期流产高危患者的妊娠结局提供指导思路。 Objective:To investigate the influencing factors for early miscarriage in in patients with thin endometrium during fresh em-bryo transfer based on multiple machine learning methods,to establish a predictive model,and to provide reasonable ideas for prevent-ing early miscarriage in patients with thin endometrium undergoing fresh embryo transfer.Methods:A total of 1153 patients with thin endometrium who underwent fresh embryo transfer for the first time were enrolled in this study,and LASSO regression and random for-est recursive feature elimination(RFE)were used for feature selection.Six machine learning models were developed and compared in terms of cross validation,accuracy,sensitivity,recall rate,f1 value,area under the ROC curve,and calibration curve.SHAP plots were used to elucidate the influencing factors for early miscarriage.Results:A total of 29 feature variables were identified by LASSO regres-sion and random forest RFE and were included in the six machine learning models,among which the multilayer perceptron model showed the best discriminatory ability for early miscarriage,with an area under the ROC curve of 0.803(95%CI=0.772-0.834).The random forest,XGBoost,and AdaBoost models had an area under the ROC curve of>0.7.Conclusion:This study establishes a ma-chine learning-based predictive model for early miscarriage in patients with thin endometrium during fresh embryo transfer,and valida-tion of various evaluation metrics shows that the model has good per-formance and can help clinicians to achieve the early diagnosis of patients,thereby providing ideas for improving the pregnancy out-come of patients at high risk of early miscarriage in the future.
作者 胡馨月 胡瑜凌 吕兴钰 丁裕斌 李恬 钟朝晖 唐晓君 Hu Xinyue;Hu Yuling;Lv Xingyu;Ding Yubin;Li Tian;Zhong Zhaohui;Tang Xiaojun(College of Public Health,Chongqing Medical University;Center for Reproductive Medicine,The First Affiliated Hospital of Chongqing Medical University;Department of Reproductive Medicine,Sichuan Jinxin Xinan Women and Children’s Hospital)
出处 《重庆医科大学学报》 CAS CSCD 北大核心 2024年第4期478-485,共8页 Journal of Chongqing Medical University
基金 重庆医科大学智慧医学资助项目(编号:ZHYX202127)。
关键词 机器学习 早期流产 薄子宫内膜 新鲜胚胎移植 machine learning early miscarriage thin endome-trium fresh embryo transfer
  • 相关文献

参考文献3

二级参考文献21

  • 1刘娜娜,王树玉,贾婵维,兰永连,马延敏.降调后基础血清雌激素水平预测IVF-ET结局的价值探讨[J].中国优生与遗传杂志,2007,15(4):97-98. 被引量:6
  • 2BIANCO K, MAHUqTE N A, SAKKAS D, et al. Effect of estradiol on oocyte development [J]. International Journal of Gynaecology & Obstetrics the Official Organ of the International Federation of Gynaecology & Obstetrics, 2009,104 (3) :230- 232.
  • 3KARA M, KUTLU T, SOFUOGLU K, et al. Association be- tween serum estradiol level on the hCG administration day and IVF-ICSI outcome [ J]. Iran J Reprod Med, 2012,10 ( 1 ) :53- 58.
  • 4STEWARD RG, SANDOVAL-LEON ], CHEN C, et al. High peak estradiol (E2)/mature oocyte ratio predicts lower pregnan- cy and live birth rates in gonadotropin releasing hormone (GnRH) antagonist/ICS1 cycles [J]. Fertility & Sterility, 2013, 100(3) :$261-$261.
  • 5PRASAD S, KUMAR Y, SINGHAL M, et al. Estradiol Level on Day 2 and Day of Trigger : A Potential Predictor of the IVF-ET Success [J ]. Journal of Obstetrics & Gynaecology of India, 2014,64 (3) : 202-207.
  • 6WEI M, ZHANG XM, GU FL, et al. The impact of LH, E2, and P level of HCG dministration day on outcomes of in vitro fer- tilization in controlled ovarian hyperstimulation [J]. Clinical & Experimental Obstetrics & Gynecology, 2015,42(3) :361-366.
  • 7PHELPS J Y, LEVINE A S, HICKMAN TN, et al. Day 4 estradiol levels predict pregnancy success in women undergoing controlled ovarian hyperstimulation for IVF [J]. Fertility & Sterility, 1998,69(6) : 1015-1019.
  • 8KHRLAF Y, TAYLOR A, BRAUDE P, et al. Low serum estra- diol concentrations after five days of controlled ovarian hyper- stimulation for in vitro fertilization are associated with poor out- come [ J ]. Fertility & Sterility, 2000,74 ( 1 ) : 63-66.
  • 9ARSLAN M, BOCCA S, ARSLAN EO, et al. Cumulative expo- sure to high estradiol levels during the follicular phase of IVF cycles negatively affects implantation [J]. Journal of Assisted Reproduction & Genetics, 2007,24 (4) : 111 - 117.
  • 10JO0 BS, PARK SB. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner [J]. Fer- tility & Sterility. 2010. 93(2):442-446.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部