摘要
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-processed thermodynamic or kinetic growth of high-quality narrow bandgap kesterite CZTSSe thin film is developed.A self-powered CZTSSe/CdS thin-film PD is then successfully fabricated.Under optimization of light absorber and heterojunction interface,especially tailoring the defect and carrier kinetics,it can achieve broadband response from300 to 1300 nm,accompaniedwith a high responsivity of 1.37A/W,specific detectivity(D*)up to 4.0×10^(14)Jones under 5 nW/cm^(2),a linear dynamic range(LDR)of 126 dB,and a maximum Ilight/Idark ratio of 1.3×10^(8)within the LDR,and ultrafast response speed(rise/decay time of 16 ns/85 ns),representing the leading-level performance to date,which is superior to those of commercial andwell-researched photodiodes.Additionally,an imaging system with a 905nm laser is built for weak light response evaluation,and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2.It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist,presenting obvious arterial blood volume changes,demonstrating great application potential in broadband and weak light photodetection scenarios.
出处
《SusMat》
SCIE
EI
2023年第5期682-696,共15页
可持续发展材料(英文)
基金
National Natural Science Foundation of China,Grant/Award Numbers:62074102,62104156,21961160720
Open Research Fund of Songshan Lake Materials Laboratory,Grant/Award Number:2021SLABFK02
Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2022A1515010979,2023A1515011256
Science and Technology Plan Project of Shenzhen,Grant/Award。