期刊文献+

参数优化变分模态分解与LSTM的电力物资需求预测

A power material demand forecasting method based on parameter optimization variational mode decomposition and LSTM
下载PDF
导出
摘要 国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition,VMD)与长短时记忆神经网络(long short-term memory,LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm,WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。 The State Grid has continuously improved its material procurement management level and refined its online procurement processes.However,inaccurate estimation of procurement plans,has led suppliers to engage in price games using the general bidding and tendering mechanism during the bidding process.This has resulted in increased procurement costs of the power grid company.Therefore,it is of great significance to establish an accurate and effective electricity material demand forecasting model.In respose to the instability,volatility and intermittency of power material sequences,this paper proposes a forecasting method for power material demand based on parameter-optimized variational mode decomposition(VMD)and long short-term memory neural network(LSTM).Typical power materials from the State Grid e-commerce zone platform were selected.VMD,optimized by using the whale optimization algorithm(WOA)parameters,was adopted to perform modal decomposition on the original sequence.LSTM models were then constructed for each modal component obtained from the decomposition.Finally,the predicted values of each mode were superimposed and reconstructed into the predicted value of power materials.Experimental results show that the proposed method achieves higher prediction accuracy compared to LSTM,EMD-LSTM,VMD-LSTM,PSO-VMD-LSTM and SSA-VMD-LSTM.This approach holds practical significance for the forecast of power grid material purchase.
作者 向洪伟 曹馨雨 张丽娟 周楚婷 张迪 邓晨凤 谢鸿鹏 王楷 XIANG Hongwei;CAO Xinyu;ZHANG Lijuan;ZHOU Chuting;ZHANG Di;DENG Chenfeng;XIE Hongpeng;WANG Kai(State Grid Chongqing Tendering Co.,Ltd.,Chongqing 401121,P.R.China;College of Automation,Chongqing University,Chongqing 400044,P.R.China)
出处 《重庆大学学报》 CAS CSCD 北大核心 2024年第4期127-138,共12页 Journal of Chongqing University
基金 国家电网有限公司科技资助项目(SGCQWZ00ZBJS2313256)。
关键词 电力物资 长短期记忆神经网络 变分模态分解 鲸鱼优化算法 时间序列 power materials long short-term memory neural network variational mode decomposition whale optimization algorithm time series
  • 相关文献

参考文献10

二级参考文献82

  • 1李岩,屠晓栋.基于电力企业的智能化仓储管理标准研究[J].标准科学,2021(2):76-80. 被引量:3
  • 2李欣然,李培强,朱湘有,彭国荣,欧阳力.基于最优化原理的高压配电网建设规模评估[J].电力系统自动化,2007,31(4):46-50. 被引量:22
  • 3Bonabeau E, Dorigo M, Theraulaz G.Swarm intelligence:From natural to artificial systems[M].New York: Oxford University Press, 1999: 40-58.
  • 4Dorigo M, Bonabeau E, Theralulaz G.Ant algorithms and stigmergy[J].Future Generation Computer System, 2000, 16 (8): 851-871.
  • 5Colomi A, Dorigo M, Maniezzo V.Distributed optimization by ant colonies[C]//Proc of the European Conf on Artificial Life, Paris,France, 1991 : 134-142.
  • 6Kennedy J, Eberhart R.Particle swarm optimization[C]//Proc of the 4th IEEE International Conf on Neural Networks, Perth, Australia, 1995 : 1942-1948.
  • 7Bonabeau E, Dorigo M, Theraulaz G.Inspiration for optimization from social insect behaviour[J].Nature,2000,406(6):39-42.
  • 8Daniel M, Martin M, Hartmut S.Ant colony optimization for resource-constrained project scheduling[J].IEEE Transactions on Evolutionary Computation, 2002,6(4) : 347-357.
  • 9Dorigo M, Gambardella L M.Ant colonies for the traveling salesman problem[J].BioSystems, 1997,43(2) :73-81.
  • 10Dorigo M, Maniezzo V, Colorni A.Ant system: Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B,1996,26(1):29-41.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部