期刊文献+

基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究

Research on optimization of multi-variety and small-batch parts numerical control machining technology based on artificial fish shoal-genetic algorithm
下载PDF
导出
摘要 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 Based on the high cost of multi-variety and small-batch parts processing,a numerical control machine tool energy consumption model was constructed based on artificial fish swarm genetic algorithm(AFSA-GA)to reduce the energy consumption of parts processing.Firstly,the power of CNC machine tool is divided into power model of each process,and the energy consumption model of machine tool is obtained based on the relationship between power model and working time.Combined with the product surface roughness model,the energy consumption model of each process and the overall roughness are normalized to form the overall energy consumption model.Secondly,taking energy consumption and roughness as the objective function,AFSA-GA algorithm is established,and the most appropriate machine power and its corresponding energy consumption and surface roughness are obtained by solving the energy consumption of each process.Finally,according to the optimal power obtained,the optimization results are verified,and a solution is provided for the actual processing of the five-axis machine tool.
作者 张天瑞 乔文澍 ZHANG Tianrui;QIAO Wenshu(School of Mechanical Engineering,Shenyang University,Shenyang 110003,CHN)
出处 《制造技术与机床》 北大核心 2024年第5期152-159,共8页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金面上项目(52075088) 辽宁省研究生教育教学改革研究资助项目(LNYJG2022490)。
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法 optimization of processing process muti-varieties and small batch parts processing artificial fish swarm-genetic algorithm
  • 相关文献

参考文献9

二级参考文献43

  • 1杨剑锋,李永梅,李秀,王宁.基于数据融合的多品种小批量产品质量预测方法[J].统计与决策,2021,37(9):33-36. 被引量:6
  • 2张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 3周育人,周继香,王勇.一种非参数惩罚函数的优化演化算法[J].计算机工程,2005,31(10):31-33. 被引量:8
  • 4王锡淮,郑晓鸣,肖健梅.求解约束优化问题的人工鱼群算法[J].计算机工程与应用,2007,43(3):40-42. 被引量:23
  • 5Deb K.An efficient constraint handling method for genetic algorithms[J].Computer Methods in Applied Mechanics and Engineering,2000,186(2):311-338.
  • 6Sarimveis H,Nikolakopoulos A.A line up evolutionary algorithm for solving nonlinear constrained optimization problems[J]. Computer and Operations,2005,32:1499-1514.
  • 7Jian Jin-bao, Tang Chun-ming, Hu Qing-jie, et al. A feasible descent SQP algorithm for general constrained optimization without strict complementary[J].Journal of Computational and Applied Mathematics,2005,180:391-412.
  • 8Dong Ying, Tang Jia-fu, Xu Bao-dong, et al. An application of swarm optimization to nonlinear programming [J]. Computers and Mathematics with Applications,2005,49:1655-1668.
  • 9WILSON S. The animat path to AI[A]. Proceedings of the First International Conference on the Simulation of Adaptive Behavior[C]. Cambridge: MIT Press, 1991.
  • 10JEFFREY D. Animats and what they car tell us[J]. Trends in Cognitive Sciences, 1998,2(2): 60-67.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部