期刊文献+

一维双方势垒单势阱模型的共振隧穿条件研究

Study on resonant tunneling conditions of a one-dimensional doublebarrier single well model
下载PDF
导出
摘要 对于双势垒或多势垒系统,当入射粒子能量符合共振能级时将产生共振隧穿,使穿透率为一极大值,这样一个重要的性质在很多量子或半经典器件中都有广阔的应用前景.本文主要研究一维双方势垒模型及具有高度对称性的ABABA型双方势垒系统.从薛定谔方程出发,通过推导获得了一般的一维双方势垒系统的透射率计算方法,为数值计算提供了参考公式,并证明了透射率解析解的存在.对于具有高度对称性的ABABA型双方势垒系统模型,本文推导了透射率的解析表达式,并且给出了共振遂穿条件的解析解,探讨了共振隧穿所需条件及影响因素. For double-barrier or multi-barrier systems,resonant tunneling will occur when the incident particle energy conforms to the resonant energy level,making the transmittance a maximum.This important property has broad application prospects in many quantum or semiclassical devices.In this paper,we mainly study one-dimensional double square barrier model and ABABA double square barrier system with high symmetry.Based on the Schrodinger equation,a general method for calculating the transmissivity of one-dimensional double-barrier system is derived,which provides a reference formula for numerical calculation,and proves the existence of analytical solution of transmissivity.For the ABABA double square barrier system model with high symmetry,the analytical expression of transmissivity is derived,the analytical solution of resonant tunneling condition is given,and the necessary conditions and influencing factors of resonant tunneling are discussed.
作者 曾嘉钟 曾孝奇 ZENG Jia-zhong;ZENG Xiao-qi(School of electric power engineering,South China University of Technology,Guangzhou,Guangdong 510641,China;School of Science,Southern University of Science and Technology,Shenzhen,Guangdong 518055,China)
出处 《大学物理》 2024年第3期5-10,共6页 College Physics
关键词 双方型势垒 共振隧穿 解析解. double barrier system resonant tunneling analytical solution
  • 相关文献

参考文献4

二级参考文献46

  • 1Capasso F, Kiehl R A. Resonant tunneling transistor with quantum well base and high-energy injection: a new negative differential resistance device[J]. J Appl Phys, 1985,58(3):1366.
  • 2Summers C J, Brennan K F. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection[J]. Appl Phys Lett, 1986,48(12):806.
  • 3Xu H Z. Well width determination in a one-dimensional symmetrical rectangular ABCBA-type double-barrier structure[J]. Phys Stat Sol(b),1992,170:K33.
  • 4Xu H Z, Yu G, Zhang F Q, et al. Transmission coefficient in symmetrical double-well potential structures[J]. Stst Sol(b),1993,179:K57.
  • 5Xu H Z, Zhang F Q, Chen G H. General expressions for transmission coefficient and resonance condition of a one-dimensional symmetrical triple-barrier structure[J]. Phys Stat Sol(b),1994,182:K73.
  • 6Xu H Z, Zhang F Q, Chen G H. Resonant tunneling in asymmetrical rectangular double-quantum-well/triple-barrier structure[J]. Phys Stat Sol(b),1994,183:K37.
  • 7Xu H Z, Chen G H. Resonant-tunneling lifetime in symmetrical double-barrier and δ-doped barrier heterostructures[J]. Phys Stat Sol(b),1994,185:K69.
  • 8Xu H Z, Chen G H. Effects of scattering on resonant tunneling in double-barrier structures[J]. Phys Stat Sol(b),1995,187:K37.
  • 9Xu H Z, Chen G H. Effects of the δ-doping position in the well on resonant tunneling in double-barrier structures[J]. Phys Stat Sol(b),1995,191:K17.
  • 10Wang X H, Gu B Y, Yang G Z. Coupling between the transverse and longitudinal components of an electron in resonant tunneling[J]. Phys Rev B, 1997,55(15):9 340.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部