期刊文献+

基于高斯过程回归的电动汽车集群灵活性的概率预测

Flexibility probabilistic prediction of electric vehicle fleet based on Gaussian process regression
下载PDF
导出
摘要 电动汽车(electric vehicle,EV)是重要的新型可调节负荷资源,预测其灵活性是实施优化调控的重要前提。首先,提出基于EV正常充电会话数据推断集群充电可行域的方法,形成关于EV集群调节灵活性的历史数据集。随后,针对充电负荷的高随机性特点,提出基于高斯过程回归的EV集群灵活性的概率预测方法。所得到的概率预测结果可用于建立EV集群运行优化问题的机会约束,并转换为特定置信度下的确定性约束。最后,利用实际充电数据进行仿真验证,结果表明,所提方法能从电量和功率两个方面比较准确的预测EV集群的充电灵活性;通过调整置信度,能够在对EV集群优化调度时权衡经济性和优化结果的可实施性。 Electric vehicles(EVs)are important new adjustable load resources,and predicting their flexibility is an essential prerequisite for implementing optimized dispatch.A method to infer the fleet charging feasibility domain based on normal charging session data of EVs is proposed,forming a historical dataset on the flexibility of EV fleets.Subsequently,considering the high stochasticity of charging load,a probability prediction method for the flexibility of EV fleets based on Gaussian process regression is proposed.The obtained probability prediction results can be used to establish chance constraints for the optimization problem of EV fleet and convert them into deterministic constraints under specific confidence levels.Lastly,simulation verification is conducted using actual charging data.The results show that the proposed method can accurately predict the charging flexibility of EV fleets from both energy and power aspects.By adjusting the confidence level,it is possible to balance the economy and the implementability when optimizing the EV fleets.
作者 刘子腾 孙烨 张沛超 徐博强 赵建立 LIU Ziteng;SUN Ye;ZHANG Peichao;XU Boqiang;ZHAO Jianli(State Grid Shanghai Municipal Electric Power Company,Shanghai 200030,China;Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《电力需求侧管理》 2024年第3期9-14,共6页 Power Demand Side Management
基金 国家重点研发计划项目(2021YFB2401200) 国网上海市电力公司科技项目(52090D230004)。
关键词 电动汽车 充电灵活性 累积电量包络线 高斯过程回归 机会约束 electric vehicle charging flexibility cumulative energy envelope Gaussian process regression chance constraint
  • 相关文献

参考文献13

二级参考文献190

共引文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部