摘要
采用数值计算的方法针对某型液体火箭发动机中液氧调节阀的流场分布和空化流动特性进行了研究。数值计算获得的阀门流通面积与液流实验数据基本吻合,验证了数值模型的准确性。分析了球阀内部流道压力、温度、涡和空穴结构的分布特性及不同工况下的演化规律。研究结果表明:液氧流经球阀,压力变化分为缓慢下降、急剧下降、急剧回升、缓慢下降和缓慢回升这5个阶段。在阀芯流道内部观察到了显著的Q等值面结构。相同压差时,水的空化数大于液氧。空穴结构主要分布在阀芯入口,随着空化数的降低,逐渐向流道内部发展。对于常温水,发生空化的临界空化数为1.38左右。空穴结构的发展受空化数和热力学效应的耦合影响。液氧温度从95 K上升到100 K时,空化数减小,名义温降增加,此时热力学效应影响起主导作用,空穴的发展受到抑制。
Distributions of flow field and the characteristics of liquid oxygen cavitating flow inside the regulating valve of a liquid rocket engine are investigated by the numerical simulation method.The accuracy of the established model is verified by comparing the simulation results with the experimental data.Then,the evolution laws of pressure,temperature,vortex and cavity structures under different operating conditions are analyzed.The results indicate that the pressure undergoes five stages including slow decrease,sharp decrease,sharp increase,slow decrease and subsequent increase,when liquid oxygen flows through the ball valve.Notably,a significant Q structure is observed inside the flow channel.In addition,the cavitation number of room-temperature water is greater than that of liquid oxygen under the same pressure difference.The cavity structure initially grows at the valve inlet and gradually move towards the interior of the flow channel as the cavitation number decreases.For room temperature water,the critical cavitation number is around 1.38.Furthermore,the development of cavity structure is affected by both the cavitation number and thermodynamic effects.When the temperature of liquid oxygen rises from 95 K to 100 K,the cavitation number decreases and the nominal temperature drop increases.In this case,the thermodynamic effect controls the evolution of the cavitating flows and suppresses the development of cavity.
作者
梁文栋
赵梦芸
刘博
郭文君
LIANG Wendong;ZHAO Mengyun;LIU Bo;GUO Wenjun(Beijing Aerospace Propulsion Institute,Beijing 100076,China)
出处
《火箭推进》
CAS
北大核心
2024年第2期98-106,共9页
Journal of Rocket Propulsion
基金
集团科技创新自主研发项目。
关键词
调节阀
液氧
空化模型
热力学效应
regulating valve
liquid oxygen
cavitation model
thermodynamic effect