期刊文献+

On the interaction phenomena to the nonlinear generalized Hietarinta-type equation

原文传递
导出
摘要 In this paper,we describe the nonlinear behavior of a generalized fourth-order Hietarinta-type equa-tion for dispersive waves in(2+1)dimension.The various wave formations are retrieved by using Hirota’s bilinear method(HBM)and various test function perspectives.The Hirota method is a widely used and robust mathematical tool for finding soliton solutions of nonlinear partial differential equa-tions(NLPDEs)in a variety of disciplines like mathematical physics,nonlinear dynamics,oceanography,engineering sciences,and others requires bilinearization of nonlinear PDEs.The different wave structures in the forms of new breather,lump-periodic,rogue waves,and two-wave solutions are recovered.In addi-tion,the physical behavior of the acquired solutions is illustrated in three-dimensional,two-dimensional,density,and contour profiles by the assistance of suitable parameters.Based on the obtained results,we can assert that the employed methodology is straightforward,dynamic,highly efficient,and will serve as a valuable tool for discussing complex issues in a diversity of domains specifically ocean and coastal engineering.We have also made an important first step in understanding the structure and physical be-havior of complex structures with our findings here.We believe this research is timely and relevant to a wide range of engineering modelers.The results obtained are useful for comprehending the fundamental scenarios of nonlinear sciences.
出处 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期89-97,共9页 海洋工程与科学(英文)
基金 support provided for this research via Open Fund of State Key Laboratory of Power Grid Environmental Protection (No.GYW51202101374).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部