期刊文献+

基于深度学习的恶劣战场环境图像恢复方法

A deep learning based approach for image recovery in harsh battlefield environments
原文传递
导出
摘要 为实现恶劣战场环境下降质图像的有效恢复、降低环境因素对战场态势感知的干扰,构建一种全新的、端到端的图像恢复方法——门控采样网络(GSNet).该网络以编码块-解码块为基本架构,以CNNs与门控卷积为编码与解码机制,以压缩和激励网络为编码块与解码块的连接机制,以高阶信息重要程度的重标定区分目标与背景特征,以通道粒度因子压缩方法为轻量化策略,实现对战场恶劣环境图像的快速恢复.相关实验结果表明,GSNet模型可使PSNR达到19.35 dB,并且SSIM达到0.724,无论是客观指标评价还是主观视觉效果,性能均优于对比的主流图像恢复算法;轻量级GSNet模型在较小提升PSNR、SSIM等指标的情况下,其参数量、FLOPs以及单张图像处理时间分别降低56.6%、54.6%和55.56%. To achieve effective recovery of degraded images from harsh battlefield environments and reduce the interference of environmental factors on battlefield situational awareness,a new and end-to-end image recovery method,gated sampling network(GSNet),is constructed.The network adopts encoding block-decoding block as the basic architecture,CNNs and gated convolution as the encoding and decoding mechanism,compression and excitation network as the connection mechanism between encoding and decoding blocks,rescaling of higher-order information importance to distinguish targets and background features,and the channel granularity factor compression method as the light-weighting strategy to achieve rapid recovery of battlefield degraded environment images.The relevant experimental results show that the GSNet model can achieve a PSNR of 19.35 dB and an SSIM of 0.724,which are better than the compared mainstream image recovery algorithms in both objective metrics evaluation and subjective visual performance.The lightweight GSNet model reduces the number of parameters,FLOPs,and single image processing time by 56.6%,54.6%,and 55.56%,respectively,with smaller improvements in PSNR and SSIM.
作者 孙传猛 陈嘉欣 裴东兴 马铁华 祖静 任一峰 SUN Chuan-meng;CHEN Jia-xin;PEI Dong-xing;MA Tie-hua;ZU Jing;REN Yi-feng(State key Laboratory of Dynamic Measurement Technology,North University of China,Taiyuan 030051,China;School of Electrical and Control Engineering,North University of China,Taiyuan 030051,China)
出处 《控制与决策》 EI CSCD 北大核心 2024年第4期1297-1304,共8页 Control and Decision
基金 国家重点研发计划青年科学家项目(2022YFC2905700) 国家重点研发计划项目(2022YFB3205800) 山西省高等学校科技创新项目(2020L0294) 山西省基础研究计划面上项目(202203021221106)。
关键词 图像恢复 恶劣战场环境 深度学习 门控卷积 压缩和激励网络 轻量化 image recovery harsh battlefield environments deep learning gated convolution compression and excitation networks light-weighting
  • 相关文献

参考文献4

二级参考文献29

  • 1李德仁,王密,潘俊.光学遥感影像的自动匀光处理及应用[J].武汉大学学报(信息科学版),2006,31(9):753-756. 被引量:86
  • 2冈萨雷斯.数字图像处理(第2版)[M].北京:电子工业出版社,2003.
  • 3SHIH Chang Hsia,PO Shien Tsai.Efficient Light Balancing Techniques for Text Images in Video Presentation Systems[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(8):1 026-1 031.
  • 4MAITRE Henri,WU Yi-feng.A Dynamic Programming Algorithm for Elastic Registration of Distorted Pictures Based on Autoregressivemodel[J].IEEE Trans.on acoustics,speech,and signal processing,1989,37(2):288-298.
  • 5RUSSO Fabrizio.An Image Enhancement Technique Combining Sharpening and Noise Reduction[J].IEEE Transactions on Instrumentation and Measurement,2002,51(4):824-828.
  • 6ANUTA P E.Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transformation Techniques[J].IEEE Trans.on Geosci.Electron,1970,GE.8(10):355-368.
  • 7MORAN M,SJACKSON R D,SLATER P N,et al.Evaluation of Simplified Procedures for Retrieval of Land Surface Reflectance Factors from Satellite Sensor Output[J].Remote Sensing of Environment,1992,41:160-184.
  • 8DU Y,CIHLAR J,BEAUBIE J,et al.Radiometric Normalization Compositing and Quality Control for Satellite High Resolution Image Mosaics over Large Areas[J].IEEE Transactions on Geosciences and Remote Sensing,2001,39(3):623-634.
  • 9LU D.Detection and Substitution of Clouds/Hazes and Their Cast Shadows on IKONOS Images[J].International Journal of Remote Sensing,2007,28(18):4 027-4 035.
  • 10NARASIMHAN S G,NAYAR S K.Contrast Restoration of Weather Degraded Images[J].Pattern Anal.Mach.Intell,2003,25(6):713-724.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部