期刊文献+

面向超级计算机系统的可视化综述

Visualization for Supercomputer System:A Survey
下载PDF
导出
摘要 随着科技飞速发展,超级计算机系统不断向着更大规模迈进,给系统使用和维护带来困难.可视化技术以直观易懂的方式展示超级计算机系统的运行状态、异常情况等,让用户更加深入地理解系统内部运行机制,有助于更好地使用和优化系统.通过文献调研,分析了超级计算机系统可视化的相关工作,并根据系统使用流程将其分为状态监控、性能优化和系统维护3个方面.分析表明,可视化在状态监控方面可帮助分析系统运行时内部进程和数据的状态;在性能优化方面可帮助定位性能瓶颈并优化;在系统维护方面可帮助发现运行异常以及对异常溯源.最后,详细阐述了未来超级计算机系统可视化在大规模数据处理、全局优化、下游任务迁移等方向上面临的机遇和挑战. With the rapid development of science and technology,supercomputer systems are growing in size and complexity,which poses challenges for their usage and maintenance.Visualization provides an intuitive way to reveal the status of supercomputer systems.It enables users to gain a deeper understanding of the inter-nal mechanisms of the systems,making it easier to use and optimize them.This survey summarizes the related work on supercomputer system visualization and classifies them into three categories:status monitoring,per-formance optimization,and system maintenance.Our survey shows that visualization helps analyze the status of internal processes and data for status monitoring;identify and optimize performance bottlenecks for perfor-mance optimization;and discover and analyze anomalies for system maintenance.Finally,we discuss future research opportunities,such as large-scale data processing,global optimization,and downstream task migra-tion.
作者 吕斐 陈长建 张嘉鹏 冯冼 唐卓 Lyu Fei;Chen Changjian;Zhang Jiapeng;Feng Xian;Tang Zhuo(College of Computer Science and Electronic Engineering,Hunan University,Changsha 4100822;Hunan Meteorological Information Center,Changsha 410118)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第3期321-335,共15页 Journal of Computer-Aided Design & Computer Graphics
基金 国家重点研发计划(2021ZD40303) 国家自然科学基金(62225205,92055213,62302160) 湖南省自然科学基金(2021JJ10023) 湖南省科技创新计划(2023ZJ1080) 长沙市科技重大专项(kh2301011) 国家自然科学基金-深圳基础研究计划(JCYJ20210324140002006)。
关键词 超级计算机 可视化 状态监控 性能优化 系统维护 supercomputer visualization status monitoring performance optimization system maintenance
  • 相关文献

参考文献20

二级参考文献83

  • 1郑春燕,郭庆胜,刘小利.基于禁忌搜索算法的点状要素注记的自动配置[J].武汉大学学报(信息科学版),2006,31(5):428-431. 被引量:12
  • 2周志华.Multi-Instance Learning from Supervised View[J].Journal of Computer Science & Technology,2006,21(5):800-809. 被引量:12
  • 3俞宏峰.大规模科学数据可视化[J].中国计算机学会通讯,2012,8(9):29-36.
  • 4Whitlock B, Favre J M, Meredith J S. Parallel in situ coupling of simulation with a fully featured visualization system [C]//Proceedings of the 1 lth Eurographies Conference on Parallel Graphics and Visualization. Aire-la-Ville: Eurographies Association Press, 2011 : 101-109.
  • 5Johnson C, Ross R. Visualization and knowledge diseovery: report from the DOE/ASCR workshop on visual analysis and data exploration at extreme seale [OL]. [2012-12-31], http:// www. sei. utah. edu/vaw/2OO7/DOE-Visualization-Report-2007. pdf.
  • 6Li M, Pan J, Gao L, et al. Bulk flow of halos in ACDM simulation [J]. The Astrophysical Journal, 2012, 761 (2) 151-161.
  • 7WongP C, Shen H-W, Johnson C R , et al. The top 10 challenges in extreme scale visual analytics [J]. IEEE Computer Graphics and Applications, 2012, 32(4): 63-67.
  • 8Dongarra J, Beckman P, Moore T, et al. The international exascale software roadmap [J]. International Journal of High Performance Computing Applications, 2011, 25(1): 3-60.
  • 9Ma K L. In situ visualization at extreme scale-challenges and opportunities [J]. IEEE Computer Graphics and Applications, 2009, 29(6): 14-19.
  • 10Zheng F, Hasan A, Cao J, et al. In-situ i/o processing: a case for location flexibility [C] /]Proceedings of the 6th Workshop on Parallel Data Storage. New York: ACM Press, 2011 : 37-42.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部