期刊文献+

基于色彩信息校准权重的融合代价算法

Fusion Cost Algorithm Based on the Process of Correcting Parameters with Color Information
下载PDF
导出
摘要 由于融合函数中的Census变换部分的代价计算取决于中心像素点的灰度值、易受光照和噪声影响,绝对误差和SAD代价函数不能利用图像色彩信息导致精度低等缺点,提出一种使用图像色彩信息来校正像素点代价值的Census变换和有权重的SAD代价函数相结合的局部立体匹配算法。在代价计算部分,使用改进SAD和Census变换的代价值结合,形成该像素点的融合代价值;在代价聚合部分,使用十字交叉域聚合的方法,得出结果后再进行迭代,可以得到精度更高的视差图。该算法通过引入邻域像素点的色彩信息,计算出权重以及色彩校正参数,然后对中心像素点的融合代价值进行优化,从而降低SAD-Census算法的误匹配率。实验结果表明,使用了色彩校正参数的改良SAD-Census算法,有效降低了图像的误匹配率,适用于色彩信息重复度不高的图像。 Due to the high dependence of traditional Census algorithm on the center pixel,being susceptible to light and noise,being unable to use the information of image color,and low accuracy of the sum of absolute differences(SAD)cost function,this paper proposes a local stereo matching algorithm which uses the information of color to correct the cost of pixels.In the cost calculation part,the improved SAD and Census algorithm are combined to form a data item of cost.In the cost aggregation part,the cross based aggregation is used to get the new data item of cost.Then using iteration,the parallax map with higher precision can be obtained.By introducing the neighboring pixels with the information of color,the weight and the color correction parameters are calculated.Next,the algorithm optimizes the fusion cost value of the central pixel,and reduce the mismatching rate of SAD-Census algorithm.The experimental results show that the improved SAD-Census algorithm with color correction parameters can effectively reduce the mismatching rate of the images,and is suitable for the image with low color information repetition.
作者 王森 申鹏宇 詹小秦 伍周元 WANG Sen;SHEN Pengyu;ZHAN Xiaoqin;WU Zhouyuan(School of Science,East China Jiaotong University,Nanchang 330013,China)
出处 《机械与电子》 2024年第5期3-8,13,共7页 Machinery & Electronics
基金 江西省自然科学基金项目(20224BAB211005)。
关键词 立体匹配 权值 SAD-Census算法 色彩信息 stereo matching weight SAD-Census algorithm information of color
  • 相关文献

参考文献13

二级参考文献125

  • 1张庆君,胡修林,叶斌,钟山.基于双目视觉的航天器间相对位置和姿态的测量方法[J].宇航学报,2008,29(1):156-161. 被引量:44
  • 2傅莉,王晓光.无人战机近距空战微分对策建模研究[J].兵工学报,2012,33(10):1210-1216. 被引量:20
  • 3王年,范益政,鲍文霞,韦穗,梁栋.基于图割的图像匹配算法[J].电子学报,2006,34(2):232-236. 被引量:27
  • 4李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 5Barnard S T, Fischler M A. Computational stereo [J]. ACM Computing Surveys, 1982, 14(4): 553-572.
  • 6Dhond U R, Aggarwal J K. Structure from stereo - A review [J]. IEEE Trans on Systems, Man and Cybernetics, 1989, 19(6): 1489-1510.
  • 7Faugeras O. What can be seen in three dimensions with an uncalibrated stereo rig[C]. Proc of the 2nd European Conf on Computer Vision. Santa Margherita Ligure, 1992: 563-578.
  • 8Koschan A: What is new in computational stereo since 1989: A survey of current stereo papers [R]. Berlin: Technical University of Berlin, 1993.
  • 9Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. Int J of Computer Vision, 2002, 47(1) : 7-42.
  • 10Brown M Z, Burschka D, Hager G D. Advances in computational stereo [J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(8):993- 1008.

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部