摘要
针对高热故障下超/特高压变压器内部绝缘系统状态变化和产气机理不清晰而严重制约变压器状态分析诊断的问题,本文基于热焓理论与仿真模拟手段相结合的方式对超/特高压变压器高热故障下油纸绝缘系统特征气体的生成路径与油纸绝缘系统的裂解机理开展研究。依据热焓理论得到气体的生成机理,并利用仿真模拟验证本文所提出的产气机理与路径。结果表明:高热故障下油纸绝缘系统中链烷烃要比环烷烃和双环芳香烃更容易发生裂解,各组分裂解生成特征气体的速率从大到小依次为纤维素、链烷烃、环烷烃、双环芳香烃。根据气体生成能可知,特征气体CH_4和C_(2)H_6最容易生成,C_(2)H_(2)最难生成,可通过特征气体在油纸绝缘系统中的生成速率判断高热故障的严重程度。
Under high thermal fault,the internal state change and gas production mechanism of insulation system in super/ultra-high voltage transformer is unclear,which seriously restricts the state analysis and diagnosis of transformer.In view of this problem,the generation path of characteristic gas and decomposition mechanism of oil-paper insulation system in super/ultra-high voltage transformer were studied under high thermal fault by enthalpy theory and simulation method.The gas generation mechanism was obtained according to the enthalpy theory,and the gas generation mechanism and path proposed in this paper were verified by simulation.The results show that the chain alkanes in the oil-paper insulation system are more likely to crack than the cycloalkanes and bicyclic aromatic hydrocarbons under high thermal fault.The generation rate of cracking characteristic gas of various materials in descending order is cellulose,chain alkanes,cycloalkanes,and bicyclic aromatic hydrocarbons.According to the gas generation energy,the characteristic gases CH_(4) and C_(2)H_(6) are the easiest to generate,while C_(2)H2 is the most difficult to generate.The generation rate of characteristic gases in oil-paper insulation system can be used to judge the severity of high thermal fault.
作者
罗传仙
朱晔
周正钦
陶佳
张静
杨旭
LUO Chuanxian;ZHU Ye;ZHOU Zhengqin;TAO Jia;ZHANG Jing;YANG Xu(Wuhan NARI Co.,Ltd.,State Grid Electric Power Research Institute,Wuhan 430074,China;NARI Group(State Grid Electric Power Research Institute)Co.,Ltd.,Nanjing 211000,China;Dalian University of Technology,Dalian 116081,China)
出处
《绝缘材料》
CAS
北大核心
2024年第5期86-94,共9页
Insulating Materials
基金
国家电网公司科技项目(5108-202218208A-2-3350-XG)。
关键词
油纸绝缘
高热故障
热焓理论
特征气体
裂解机理
oil-paper insulation
high thermal fault
enthalpy theory
characteristic gas
pyrolysis mechanism