期刊文献+

基于CEEMDAN-VMD-PSO-LSTM模型的桥梁挠度预测 被引量:2

CEEMDAN-VMD-PSO-LSTM model for bridge deflection prediction
下载PDF
导出
摘要 针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解(CEEMDAN)算法对桥梁原始挠度序列进行初次模态分解,分解为若干本征模态分解函数(IMF);②使用样本熵(SampEn/SE)计算各IMF分量的复杂度,并通过K-means聚类为高频、中频和低频3个IMF分量;③通过变分模态分解(VMD)算法对高频IMF分量进行二次模态分解;④分别对各个IMF分量通过PSO算法得出LSTM最优超参数组合;⑤将各最优超参数分别代入LSTM模型进行训练,并将各预测结果融合为最终的预测结果。结果表明:该预测方法具有最高的预测精度,为智慧桥梁的安全监测监控提供了新的技术方法。 In order to forecast bridge deflection for the operational phase of monitoring the health status of bridges, a CEEMDAN-VMD-PSO-LSTM model was built, including three main modules, namely, Quadratic modal decomposition smoothing, the PSO algorithm, and LSTM prediction.There are five steps.First, the original deflection sequence of a bridge is decomposed into several intrinsic mode decomposition functions(IMFs) using CEEMDAN.Second, the complexity of each IMF component is determined using sample entropy(SampEn/SE),and three IMF components of high, medium, and low frequencies are clustered by K-means.Thirdly, the VMD is used to determine the original deflection sequence and high-frequency IMF components are then subjected to quadratic mode decomposition by VMD.Fourthly, the PSO optimization algorithm is used to derive the optimal LSTM hyperparameters for each IMF component.Fifthly, the LSTM model is trained using each of the optimal hyperparameters, and finally, the prediction results are combined to produce the final prediction result.The findings indicate that the prediction method offers a fresh technical strategy for the safety monitoring of smart bridges and has the highest prediction accuracy.
作者 郭永刚 张美霞 王凯 刘立明 陈卫明 GUO Yonggang;ZHANG Meixia;WANG Kai;LIU Liming;CHEN Weiming(Anhui Construction Engineering Investment Group Co.,Ltd.,Hefei 230031,China;Faculty of Engineering,China University of Geosciences(Wuhan),Wuhan 430074,China)
出处 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期150-159,共10页 Safety and Environmental Engineering
基金 国家重点研发计划项目(2022YFC3005900) 陕西省煤矿水害防治技术重点实验室开放基金项目(2021SKMS07) 中央高校基本科研业务费专项资金项目(CUG2642022006) 2022年度湖北省高等学校省级教学研究项目(2022143) 2022年度安徽省住房城乡建设科学技术计划项目(2022-YF104)。
关键词 桥梁挠度预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-MEANS聚类 粒子群优化 长短期记忆网络 bridge deflection prediction complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) variational mode decomposition(VMD) SampEn/SE K-means particle swarm optimi-zation(PSO) long short-time memory network(LSTM)
  • 相关文献

参考文献14

二级参考文献194

共引文献77

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部