期刊文献+

考虑多源供能波动性的企业生产运作与能源计划耦合优化

Coupling optimization of enterprise production operation and energy planningconsidering multi-source energy supply fluctuation
下载PDF
导出
摘要 多源供能是提高清洁能源占比,助力制造企业绿色低碳转型的有效方式。然而受季节、天气等因素影响,可再生能源出力存在波动性,影响能源系统供应的稳定性。针对该问题,构建了企业生产运作与能源计划耦合优化的不确定整数规划模型,利用区间数描述能源出力的不确定信息。同时通过设计多种群融合策略、外部档案更新策略,提出了多目标混合鲸鱼群算法,有效地利用各个算法的寻优特性,提升整体性能,获得更优的Pareto解集。最后通过算法性能和能源策略对比实验,证明了所构建模型及求解方法的可行性和有效性。同时验证了所设计算法对求解不确定优化模型的优势和竞争力,以及多源供能模式能够有效帮助企业实现节能减排、可持续生产目标。 Multi-source energy supply is an effective way to increase the proportion of clean energy and assist manufacturing enterprises in green and low-carbon transformation.However,due to factors such as season and weather,renewable energy output fluctuates,affecting the stability of energy system supply.To address this problem,this paper constructed an uncertain integer programming model for the coupling optimization of enterprise production operation and energy planning,using interval numbers to describe the uncertain information of energy output.At the same time,it proposed a multi-objective hybrid whale swarm algorithm by designing multiple group fusion strategies and external file update strategies,which effectively utilized the optimization characteristics of each algorithm to improve overall performance and obtain a better Pareto solution set.Finally,it demonstrated the feasibility and effectiveness of the proposed model and solution method through comparative experiments on algorithm performance and energy strategies.At the same time,the advantages and competitiveness of the algorithm designed in this paper to solve uncertain optimization models and the multi-source energy supply mode can effectively help enterprises achieve energy conservation,emission reduction and sustainable production goals have been verified.
作者 董君 叶春明 Dong Jun;Ye Chunming(School of Management,Henan Institute of Technology,Xinxiang Henan 453003,China;Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2024年第6期1808-1814,共7页 Application Research of Computers
基金 河南省软科学研究计划资助项目(232400411101) 河南工学院博士科研启动项目(KQ2106) 河南省高等学校重点科研项目(24A630009)。
关键词 鲸鱼群算法 多源供能 波动性 耦合优化 whale swarm algorithm multi-source energy supply fluctuation coupling optimization
  • 相关文献

参考文献9

二级参考文献82

  • 1王凌,郑洁,王晶晶.求解区间数分布式流水线调度的混合离散果蝇优化算法[J].控制与决策,2020,35(4):930-936. 被引量:22
  • 2王思涵,黎阳,李新宇.基于鲸鱼群算法的柔性作业车间调度方法[J].重庆大学学报(自然科学版),2020,43(1):1-11. 被引量:18
  • 3刘科研,盛万兴,李运华.基于改进遗传模拟退火算法的无功优化[J].电网技术,2007,31(3):13-18. 被引量:59
  • 4GOREN S,SABUNCUOGLU I.Optimization of schedule robustness and stability under random machine breakdowns and processing time variability[J].IIE Transactions,2009,42(3):203-220.
  • 5CHENG T C E.Optimal common due date with limited completion time deviation[J].Computer and Operations Research,1998,15 (2):91-96.
  • 6GU J,GU M,CAO C,et al.A novel competitive co-evolutionary quantum genetic algorithm for stochastic Job-Shop scheduling problem[J].Computers & Operations Research,2010,37(5):927-937.
  • 7AZADEH A,NEGAHBAN A,MOGHADDAM M.A hybrid computer simulation-artificial neural network algorithm for optimisation of dispatching rule selection in stochastic Job-Shop scheduling problems[J].International Journal of Production Research,2012,50 (2):551-566.
  • 8MARJAN V D A,KEVIN V B,HAN H.Finding robust solutions for the stochastic Job-Shop scheduling problem by including simulation in local search[M]//Experimental Algorithms.Berlin,Gerrnany:Springer-Verlag,2013:402-413.
  • 9HU Y,YIN M,LI X.A novel objective function for Job-Shop scheduling problem with fuzzy processing time and fuzzy due date using differential evolution algorithm[J].The International Journal of Advanced Manufacturing Technology,2011,56(9/10/11/12):1125-1138.
  • 10HE C,QIU D,GUO H.Solving fuzzy Job-Shop scheduling problem based on interval number theory[C]//Proceedings of the 2012 International Conference on Information Technology and Software Engineering.Berlin,Germany:Springer-Verlag,2013:393-401.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部