摘要
Achieving composition tunability and structure editability of nanoalloys with high level strain may be an efficient strategy to remarkably boost catalytic performance toward oxygen evolution reaction(OER)in acidic water oxidation.Herein,lotus root-like RuIr alloys with native micro-strain were constructed by an epitaxial growth of Ru-richened hcp-(0001)branches on Ir-richened fcc-(111)seeds using a polyol thermal synthesis strategy.The resultant Ru_(60)Ir_(40) alloy shows an OER overpotential of 197 mV at 10 mA cm^(-2) and a Tafel slope of 46.59 mV dec^(-1),showing no obvious activity decay for 80 h continuous chronopotentiometry test in 0.5 M H_(2)SO_(4).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy and density functional theory(DFT)calculations show that that the remarkably improved activity of the lotus root-like alloy can be attributed to the(0001)facet-triggered strain,which can efficiently optimize the electronic band structure of the active metal and the weakening of the chemisorption of oxygen-containing substances to boost OER electrocatalysis.Therefore,this work provides a new strategy to designing a class of advanced electrocatalysts with high strain using diverse nanostructures as building materials for carbon-free clean energy conversion systems.
基金
supported by the National Natural Science Funds of China(Grant number 22278016)
Science and technology planning project of Yunnan Precious Metals Laboratory(Grant number YPML-2023050204)。