摘要
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。
Sudden pollution incidents in surface water have occurred frequently and caused serious environmental and social impacts,which raised new requirements and challenges towards to environmental supervision departments.Online monitoring data of surface water quality have features of high-frequency and high time-efficiency.The recent research status and progress of water-quality prediction models with online time-series monitoring data were summarized,including data soft measurement,preprocessing methods,and water-quality prediction models.The problems presenting in the practical applications of the relevant water-quality prediction models were analyzed.Also,the future research directions with respect to water-quality prediction are proposed.The aim of this work is to provide reference and technology support for water-quality prediction and warning,and environmental supervision.
作者
秦艳
徐庆
陈晓倩
刘振鸿
唐亦舜
高品
QIN Yan;XU Qing;CHEN Xiaoqian;LIU Zhenhong;TANG Yishun;GAO Pin(College of Environmental Science and Engineering,Donghua University,Shanghai,China;Shanghai Environmental Monitoring Center,Shanghai,China;Bioassay and Safety Assessment Laboratory,Shanghai Academy of Public Measurement,Shanghai,China)
出处
《东华大学学报(自然科学版)》
CAS
北大核心
2024年第3期116-122,共7页
Journal of Donghua University(Natural Science)
基金
上海市生态环境局科研项目(沪环科[2020]第51号)。
关键词
水质预测模型
在线监测
时间序列分析
自回归模型
人工神经网络
water-quality prediction model
online monitoring
time-series analysis
autoregressive model
artificial neural network