期刊文献+

统计分析支持下的化工过程稳态检测方法分析

Analysis of Steady-state Detection Methods for Chemical Processes Supported by Statistical Analysis
下载PDF
导出
摘要 为实现化工过程稳态的快速准确检测,而开展基于统计分析方法的检测技术研究。主要从控制图法、CUSUM累积和法、多变量统计分析等统计方法概述,以及机器学习和深度学习等数据驱动法和模型驱动法对比分析。考察不同方法在检测精度、鲁棒性和计算效率方面的优劣,指出混合检测模型综合考虑先验知识与数据驱动的优点。最后,给出主成分分析判断炼油装置稳态的应用实例,为工业过程监测与控制提供参考。 In order to achieve rapid and accurate detection of steady-state chemical processes,research on detection techniques based on statistical analysis methods is carried out.This research primarily provides an overview of statistical methods such as control charts,CUSUM(Cu-mulative Sum Control Chart),and multivariate statistical analysis,as well as a comparative analysis of data-driven methods like machine learning and deep learning versus model-driven methods.The study examines the advantages and disadvantages of different methods in terms of detection ac-curacy,robustness,and computational efficiency,highlighting the benefits of hybrid detection models that integrate prior knowledge with data-driven approaches.Finally,an application example of using principal component analysis to determine the steady state of a refinery unit is provided,offer-ing a reference for industrial process monitoring and control.
作者 边尚芸 李彦鹏 杨林 Bian Shangyun;Li Yanpeng;Yang Lin(Beijing Jiutongqu Testing Technology Co.,Ltd.,Beijing,100000)
出处 《当代化工研究》 CAS 2024年第10期86-88,共3页 Modern Chemical Research
关键词 化工过程 稳态检测 统计分析 主成分分析 数据驱动 混合模型 chemical process steady state detection statistical analysis principal component analysis data driven hybrid model
  • 相关文献

参考文献10

二级参考文献49

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部