期刊文献+

基于脑电技术的MOOC平台用户体验优化策略研究

User Experience Optimization Strategy of MOOC Platform Based on EEG Technology
下载PDF
导出
摘要 目的通过脑电技术与主观问卷相结合的方式,测量MOOC平台用户体验水平,探索影响MOOC平台用户体验的主要因素,提出设计优化建议。方法通过脑电技术采集各被试者在使用MOOC平台时的脑电信号特征,结合用户体验量表获取用户的主观评价。采用频域分析的方法提取节律波能量值并进行定量化分析,洞察节律波能量与主观评价的内在联系,从而实现MOOC平台用户体验水平的定量化分析。结论中国大学MOOC平台用户体验优于学堂在线平台,MOOC平台可用性、可寻性是影响用户注意力、脑力负荷、唤醒度的重要影响因素,MOOC平台愉悦性是影响用户情绪的主要因素。 The work aims to measure the user experience level of the MOOC platform and explore the main factors that affect the user experience,using a combined method of EEG technology and subjective questionnaires,and to provide design optimization suggestions.EEG signals were collected from each subject while using the MOOC platform,and the subjective evaluation of users was obtained through a user experience questionnaire.Frequency domain analysis was used to extract rhythmic wave energy values and conduct quantitative analysis to explore the inherent relationship between rhythmic wave energy and subjective evaluation,thus achieving a quantitative analysis on the user experience level of the MOOC platform.The MOOC platform of Chinese universities has a better user experience than the Xuetang platform.The usability and findability of the MOOC platform are important factors that affect user attention,cognitive load,and arousal,while the pleasantness of the MOOC platform is the main factor that influences user emotions.
作者 边坤 韩冬楠 BIAN Kun;HAN Dongnan(Inner Mongolia University of Science and Technology,Inner Mongolia Baotou 014010,China)
机构地区 内蒙古科技大学
出处 《包装工程》 CAS 北大核心 2024年第12期147-155,共9页 Packaging Engineering
基金 内蒙古自治区直属高校基本科研业务费项目“基于电生理学的大学生在线学习体验与学习效果分析” 内蒙古科技大学教改项目“基于大学生认知负荷研究的线上教学质量保障与评价体系建设”(JY202103)。
关键词 MOOC平台 用户体验 脑电 节律波 MOOC platform user experience EEG rhythmic wave energy
  • 相关文献

参考文献7

二级参考文献117

  • 1胡以涛,查贵庭,唐惠燕,包平.国内外MOOC的移动终端评价研究[J].现代教育技术,2015,25(10):73-79. 被引量:10
  • 2阎克乐,张文彩,张月娟,封文波,袁立壮,王兰爽,唐一源.心率变异性在心身疾病和情绪障碍研究中的应用[J].心理科学进展,2006,14(2):261-265. 被引量:69
  • 3Allanson,J.,& Fairclough,S.H.(2004),A research agenda for physiological computing.Interacting with Computers,16(5):857-878.
  • 4Boucsein,W.(2012),Electrodermal activity.New York:Springer.
  • 5Briesemeister,B.B,Tamm,S.,Heine,A.,& Jacobs,A.M.(2013),Approach the good,withdraw from the bad-a review on frontal alpha asymmetry measures in applied psychological research.Psychology,4(3A):261-267.
  • 6Bruneau,D.,Sasse,M.A.,& McCarthy,J.D.(2002),The eyes never lie:The use of eyetracking data in HCI research.Proceedings of the CHI'02 Workshop on Physiological Computing.New York,NY:ACM Press.
  • 7Cipresso,P.,Serino,S.,Villani,D.,Repetto,C.,Sellitti,L.,Albani,G.,..Riva,G.(2012),Is your phone so smart to affect your state? An exploratory study based on psychophysiological measures.Neurocomputing,84,23-30.
  • 8Dirican,A.C.,& G6ktiirk,M.(2011),Psychophysiologieal measures of human cognitive states applied in human computer interaction.Procedia Computer Science,3,1361-1367.
  • 9Ganglbauer,E.,Schrammel,J.,Deutsch,S.,& Tscheligi,M.(2009,August),Applying psychophysiological methods for measuring user experience:possibilities,challenges and feasibility.Workshop on user experience evaluation methods in product development(UXEM'09):Uppsala,Sweden.
  • 10Hassenzahl,M.,& Tractinsky,N.(2006),User experience-a research agenda.Behaviour & Information Technology,25(2):91-97.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部