期刊文献+

协同CPU和GPU的核密度估计及其可视化算法

Kernel Density Estimation and Its Visualization Algorithm Combining CPU and GPU
下载PDF
导出
摘要 大数据时代背景下,空间数据点规模越来越大,图像分辨率越来越高,使用CPU计算核密度估计结果并对其可视化的效率越来越低,难以满足应用对实时性的需求。针对该问题,提出了一种协同CPU和GPU的核密度估计及其可视化算法,该算法结合CPU的控制能力、GPU的并行计算能力以及OpenGL中的核心模式,并借助显存映射,同时优化了核密度估计的计算和可视化2方面。实验结果表明,相较于CPU并行和串行算法,该算法的执行效率分别提高了约5倍和20倍,且随着图像分辨率的提高,加速比呈现逐步上升的趋势。 In the context of the big data era,the scale of spatial data points is getting larger and larger,and the image resolution is getting higher and higher,thus,the efficiency of using CPU to calculate kernel density estimation result and visualize it is getting lower and lower.It’s difficult to meet the real-time requirements of applications.Aiming at this problem,we proposed a kernel density estimation and visualization algorithm combining CPU and GPU.By utilizing the control ability of CPU,the parallel computing ability of GPU and the core mode in OpenGL,this algo-rithm optimizes both computational and visual aspects of kernel density estimation.The experimental results show that compared with CPU based parallel and serial algorithms,the efficiency of this algorithm is increased by about 5 times and 20 times respectively,and with the improve-ment of image resolution,the acceleration ratio shows a gradual upward trend.
作者 胡森 高苏 蔡忠亮 HU Sen;GAO Su;CAI Zhongliang(School of Resource and Environmental Sciences,Wuhan University,Wuhan 430079,China;Yunnan Provincial Mapping Institute,Kunming 650034,China)
出处 《地理空间信息》 2024年第6期29-33,47,共6页 Geospatial Information
基金 国家重点研发计划资助项目(2021YFB2501101)。
关键词 核密度估计 可视化 GPU OPENGL 统一计算架构 kernel density estimation visualization GPU OpenGL CUDA
  • 相关文献

参考文献5

二级参考文献40

  • 1郭宇达,朱欣焰,呙维,佘冰.基于Spark计算框架的路网核密度估计并行算法[J].武汉大学学报(信息科学版),2020,45(2):289-295. 被引量:7
  • 2徐建华,岳文泽,谈文琦.城市景观格局尺度效应的空间统计规律——以上海中心城区为例[J].地理学报,2004,59(6):1058-1067. 被引量:89
  • 3Silverman B W. Dehnad K. Density Estimation forStatistics and Data Analysis[M]. London: Chap-man Hall, 1986.
  • 4Xie Z, YanJ. Kernel Density Estimation of Traffic Ac-cidents in a Network Space [J]. Computers,Environ-ment and Urban Systems , 2008,32(5) : 396-406.
  • 5Anselin L. Local Indicators of Spatial Association-LISA[J]. Geographical Analysis,1995,27(2) : 93-115.
  • 6Ord J K,Getis A. Local Spatial AutocorrelationStatistics: Distributional Issues and Application[J].Geographical Analysis , 1995, 27(4) : 286-306.
  • 7Borruso G. Network Density Estimation: A GIS Ap-proach for Analysing Point Patterns in a Network Space[J]. Transactions in GIS,2008,12(3) : 377-402.
  • 8Tobler W. A Computer Movie Simulating UrbanGrowth in the Detroit Region [J]. Economic Geog-raphy , 1970,46 (2):234-240.
  • 9Sheather S J, Jones M C. A Reliable Data-basedBandwidth Selection Method for Kernel Density Es-timation[J]. Journal of the Royal Statistical Soci-ety. Series B (Methodological),1991 : 683-690.
  • 10Elgammal A,Duraiswami R,Harwood D. et al.Background and Foreground Modeling Using Non-parametric Kernel Density Estimation for VisualSurveillance[J]. Proceedings of the IEEE, 2002,90(7); 1 151-1 163.

共引文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部