期刊文献+

基于字典学习的船用轴承故障诊断分析

Fault Diagnosis Analysis of Marine Bearing Based on Dictionary Learning
下载PDF
导出
摘要 轴承实时监测对于旋转机械运行的安全性和可靠性具有重要意义,已有研究侧重于轴承故障特征频率的提取,受限于解调频谱分辨率与采样时间限制,不能更加实时判断轴承故障类型。为实现轴承故障状态的有效识别,提出增强字典完备性以及稀疏系数稀疏度的拓展策略,建立基于字典学习的自适应特征向量提取,对于不同转速,混合负载下的4种轴承故障进行识别,结果表明:仅需少量样本数据(500采样点,250样本)就可达到较高的分类准确率(90%以上)。 Real-time monitoring of bearings is of great significance to the safety and reliability of rotating machinery operation.Existing research focuses on the extraction of bearing fault feature frequency,which is limited by the demodulation spectrum resolution and sampling time,and cannot determine the type of bearing faults in a more real-time manner.In order to realize the effective recognition of bearing fault state,the expansion strategy of enhancing dictionary completeness and sparse coefficient sparsity is proposed,and the adaptive feature vector extraction is established based on dictionary learning,which can recognize four kinds of bearing faults under different rotational speeds and mixed loads,and the results show that only a small number of samples are needed(500 samples,250 samples),and the classification accuracy can be realized with a higher accuracy of 90%or more.
作者 罗强 傅顺军 蔡洪钧 沈金平 王环 LUO Qiang;FU Shunjun;CAI Hongjun;SHEN Jinping;WANG Huan(Shanghai Marine Equipment Research Institute,Shanghai 200031,China;Institute of Process Equipment,College of Energy Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《机电设备》 2024年第3期105-110,共6页 Mechanical and Electrical Equipment
关键词 轴承故障 字典学习 自适应特征向量提取 智能诊断 bearing fault dictionary learning adaptive feature vector extraction intelligent diagnosis
  • 相关文献

参考文献5

二级参考文献46

  • 1陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 2McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing [J]. Journal of Sound and Vibration, 1984,96 (1) :69-82.
  • 3McFadden P D, Smith J D. Model for the vibration produced by multiple point defects in a roiling element bearing[J]. Journal of Sound and Vibration, 1985, 98 (2) :263-273.
  • 4Kiral Z, Karagulle H. Simulation and analysis of vi- bration signals generated by rolling element bearing with defects[J]. Tribology International, 2003, 36: 667-678.
  • 5Su YT, LinMH, LeeMS. The effects of surface ir- regularities on roller bearing vibrations[J]. Journal of Sound and Vibration, 1993, 163(3): 455-466.
  • 6Randall R B, Antoni J, Chobsaard S. The elationship between pectral correlation and envelope analysis for cyclostationary machine signals application to ball bearing diagnostics[J]. Mechanical Systems and Sys- tem Processing, 2001, 15(5) :945-962.
  • 7Rahnejat H, Gohar R. Vibration of radial ball bearings [J]. Journal of Mechanical Engineering Science, 1985, 199: 181-193.
  • 8Rahnejat H. Computational modelling of problems in contact dynamics[J]. Engineering Analysis, 1985, 2: 192-197.
  • 9Ashtekar A, Sadeghi F, Stacke L E. A new approachto modeling surface defects in bearing dynamics simu- lations[J]. Journal of Tribology-Transactions of "the ASME, 2008, 130:1-8.
  • 10Rafsanjani A, Abbasion S. Anoushiravan farshidianfar nonlinear dynamic modeling of surface defects in roll- ing element bearing system [J]. Journal of Sound and Vibration, 2009(319): 1150-1174.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部