期刊文献+

Honokiol Prevents Intestinal Barrier Dysfunction in Mice with Severe Acute Pancreatitis and Inhibits JAK/STAT1 Pathway and Acetylation of HMGB1

原文传递
导出
摘要 Objective To investigate the effect of honokiol(HON)and the role of high-mobility group protein B1(HMGB1)on the pathogenesis of severe acute pancreatitis(SAP).Methods Thirty mice were numbered according to weight,and randomly divided into 5 groups using a random number table,including control,SAP,SAP and normal saline(SAP+NS),SAP and ethyl pyruvate(SAP+EP),or SAP+HON groups,6 mice in each group.Samples of pancreas,intestine,and blood were collected 12 h after SAP model induction for examination of pathologic changes,immune function alterations by enzyme linked immunosorbent assay(ELISA),and Western blot.In vitro experiments,macrophages were divided into 5 groups,the control,lipopolysaccharide(LPS),LPS+DMSO(DMSO),LPS+anti-HMGB1 monoclonal antibody(mAb),and LPS+HON groups.The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled.The location and acetylation of HMGB1 were measured by Western blot.Finally,pyridone 6 and silencing signal transducer and activator of the transcription 1(siSTAT1)combined with honokiol were added to determine whether the Janus kinase(JAK)/STAT1 participated in the regulation of honokiol on HMGB1.The protein expression levels of HMGB1,JAK,and STAT1 were detected using Western blot.Results Mice with SAP had inflammatory injury in the pancreas,bleeding of intestinal tissues,and cells with disrupted histology.Mice in the SAP+HON group had significantly fewer pathological changes.Mice with SAP also had significant increases in the serum levels of amylase,lipase,HMGB1,tumor necrosis factor-α,interleukin-6,diamine oxidase,endotoxin-1,and procalcitonin.Mice in the SAP+HON group did not show these abnormalities(P<0.01).Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability,decreased the levels of junctional adhesion molecule C,and elevated intercellular permeability(P<0.01).HON treatment blocked these effects.Studies of macrophages indicated that LPS led to low nuclear levels of HMGB1,however,HON treatment increased the nuclear level of HMGB1(P<0.01).HON treatment also inhibited the expressions of JAK1,JAK2,and STAT1(P<0.01)and increased the acetylation of HMGB1(P<0.05).Conclusion HON prevented intestinal barrier dysfunction in SAP by inhibiting HMGB1 acetylation and JAK/STAT1 pathway.
出处 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2024年第6期534-542,共9页 中国结合医学杂志(英文版)
基金 Supported by National Natural Science Foundation of China(No.81803920 and 81673789) Key Medical Specialty Construction Project of Shanghai Municipal Health Commission(No.ZK2019B18) Shanghai Putuo District Health Commission Characteristic Disease Construction Project(No.2020TSZB03)。
  • 相关文献

参考文献2

二级参考文献13

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部