摘要
【目的】研究甲基二乙醇胺(MDEA)与不同二元胺混合后配方的吸收再生性能。【方法】在体积分数12%的CO_(2)和88%的N_(2)模拟烟气环境下,以MDEA为主剂,分别添加乙二胺(EDA)、1,3-丙二胺(DAP)、3-甲氨基丙胺(MAPA)、羟乙基乙二胺(AEEA)、 N, N-二甲基乙二胺(DMEDA)和N,N-二甲基-1,3-丙二胺(DMPDA)作为活化剂。在总胺质量分数为40%的条件下,以主剂与活化剂的质量比1∶1、2∶1、3∶1配置化学吸收剂。通过比较鼓泡吸收和油浴再生实验,得到不同吸收剂的吸收速率、再生速率和循环容量,筛选出性能优良的吸收剂配方。【结果】MDEAEDA体系在MDEA与EDA的质量比1∶1时吸收性能最佳;MDEA-DMEDA体系在MDEA与DMEDA的质量比2∶1时再生性能最佳,循环容量达到1.7 mol/kg;MDEA-AEEA体系在MDEA与AEEA的质量比1∶1时整体性能达到最优,循环容量可以达到1.49 mol/kg。【结论】研究结果可为工业上混合胺液的配方优选提供理论依据。
[Objectives]The absorption and regeneration properties of different formulations of methyldiethanolamine(MDEA)mixed with different diamines were studied.[Methods]In the simulated flue gas environment with 12%CO_(2) and 88%N_(2),MDEA was used as the main agent,ethylenediamine(EDA),1,3-diaminopropane(DAP),Nmethyl-1,3-propanediamine(MAPA),aminoethylethanolamine(AEEA),N,N-dimethylethylenediamine(DMEDA)and 3-dimethylaminopropylamine(DMPDA)were added as activators,respectively.Under the condition of total amine concentration of 40%,the chemical absorbent was configured with mass ratio of main agent to activator 1∶1,2∶1 and 3∶1,respectively.The absorption rate,regeneration rate and circulation capacity of different absorbers were obtained by comparing bubble absorption and oil bath regeneration experiments.[Results]MDEA-EDA system has the best absorption property when the mass ratio of MDEA to EDA is 1∶1,MDEA-DMEDA system has the best regeneration property when the mass ratio of MDEA to DMEDA is 2∶1,and the circulation capacity reaches 1.7 mol/kg.The overall property of MDEA-AEEA system is optimized when the mass ratio of MDEA to AEEA is 1∶1,and the cycle capacity can reach 1.49 mol/kg.[Conclusions]The research results can provide a theoretical basis for the formulation optimization of mixed amine solution in industry.
作者
孙宇航
李超
王争荣
孙路长
王凯亮
胡昔鸣
方梦祥
张锋
SUN Yuhang;LI Chao;WANG Zhengrong;SUN Luchang;WANG Kailiang;HU Ximing;FANG Mengxiang;ZHANG Feng(National Key Laboratory of Energy Efficiency and Clean Utilization(Zhejiang University),Hangzhou 310027,Zhejiang Province,China;China Huadian Engineering Co.,Ltd.,Fengtai District,Beijing 100160,China;Qingshan Lake Energy Research Base,Zhejiang University,Hangzhou 311300,Zhejiang Province,China;State Grid Zhejiang Electric Power Co.,Ltd.Construction Branch,Hangzhou 310008,Zhejiang Province,China)
出处
《发电技术》
CSCD
2024年第3期468-477,共10页
Power Generation Technology
基金
浙江省尖兵计划项目(2022C03040)
中国华电集团公司“揭榜挂帅”项目(CHDKJ21-01-109)
中央高校基本科研业务费专项资金(2022ZFJH004)。