期刊文献+

Growth,optical dispersion and magnetic behavior of Dy^(3+) doped yttrium iron garnet crystals

原文传递
导出
摘要 Y_(3)Fe_(5)O_(12)(YIG)crystals are highly desirable for the fabrication of mid-infrared isolators with the rapid growth of optical communications,although it is rather challenging to grow large size and high-quality single crystals.Dy^(3+)doping is expected to improve the optical and magneto-optical prope rties.However,high quality Dy:YIG crystals and the adjustment of Dy^(3+)on the structure and optical behavior of YIG crystal remain unclear,impeding its practical applications.Herein,a series of Y_(3-x)Dy_(x)Fe_(5)O_(12)(x=0,0.5,1.0,1.5,3)solid solution crystals was grown by the flux-Bridgman method and single crystals up to 25 mm were obtained.With the introduction of Dy^(3+),lattice parameters are gradually enlarged from 1.2379 nm(YIG)to 1.2420 nm(DyIG).Typical Dy^(3+)absorption peaks are observed around 1070,1265 and 1670 nm.The refractive index decreases from 2.37(500 nm)to 2.10(2500 nm)for YIG crystal,and it reduces from 2.47(500 nm)to 2.16(2500 nm)for DyIG crystal.The optical bandgaps remain almost unchanged for Dy:YIG crystals.The optical dispersion of the refractive indices was finely fitted by the Wemple and DiDomenico(WDD)and the Sellmeier models,respectively.With the increase of Dy^(3+)content,the saturation magnetization(Ms)decreases significantly from 23.62 emu/g(YIG)to 5.33 emu/g(DyIG).Small coercive field is persisted for this system,endowing small external magnetic field.These results provide valuable references for the manipulation of rare earths on the properties of magnetooptical crystals,which is beneficial to the design of high-performance garnet crystals for the application of optical switching and non-reciprocal related devices.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第6期1110-1117,I0004,共9页 稀土学报(英文版)
基金 Project supported by Joint Fund NSAF of National Natural Science Foundation of China China Academy ofEngineering Physics(U2130124) Shanghai Municipal Commission of Economy and Informatization,China(GYQJ-2020-1-19) theNational Natural Science Foundation of China(52172121)。
  • 相关文献

参考文献4

二级参考文献9

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部