期刊文献+

基于多目标粒子群算法滑靴结构优化设计和仿真分析

Optimization Design and Simulation Analysis of Slipper Structure Based on Multi-Objective Particle Swarm Algorithm
下载PDF
导出
摘要 液压变压器滑靴副底部结构,对于液压变压器总体效率的提高有着至关重要的作用,面对液压变压器复杂的运行工况,对滑靴副底部结构使用多目标粒子群优化算法,对滑靴副底部参数进行优化设计分析。首先通过建立液压变压器滑靴副复杂的受力分析图,建立滑靴副动力学方程,然后构建关于液压变压器的AMESim滑靴副泄漏和摩擦模型,随后建立多目标粒子群优化算法模型,以滑靴副泄漏量与摩擦转矩最小作为优化目标,随后对于滑靴底部参数进行寻优,最后通过优化算法得到优化后的滑靴底部参数就,通过模型仿真实验得到结果,优化后的滑靴底部结构参数对于降低滑靴副的泄漏量与摩擦转矩损失有较大的提高,极大的提高了滑靴副的效率。 The bottom structure of the slipper pair in a hydraulic transformer plays a crucial role in improving the overall efficiency of the hydraulic transformer.Faced with the complex operating conditions of the hydraulic transformer,a multi-objective particle swarm optimization algorithm is used to optimize and design the bottom structure of the slipper pair.Firstly,a complex force analysis diagram of the slipper pair in the hydraulic transformer is established,and the dynamic equations of the slipper pair are derived.Then,the AMESim leakage and friction models of the slipper pair in the hydraulic transformer are constructed.Subsequently,a multi-objective particle swarm optimization algorithm model is established,with the minimum leakage and friction torque of the slipper pair as the optimization objectives.The bottom parameters of the slipper pair are optimized,and the optimized bottom parameters of the slipper pair are obtained through the optimization algorithm.Finally,the results are obtained through model simulation experiments.The optimized bottom structure parameters of the slipper pair significantly reduce the leakage and friction torque losses of the slipper pair,greatly improving the efficiency of the slipper pair.
作者 周栓美 Shuanmei Zhou(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai)
出处 《建模与仿真》 2024年第3期2789-2803,共15页 Modeling and Simulation
关键词 滑靴结构 AMESIM 粒子群算法 液压变压器 多目标优化 Slipper Structure AMESim Particle Swarm Algorithm Hydraulic Transformer Multi-Objective Optimization
  • 相关文献

参考文献3

二级参考文献23

  • 1王瑞杰.轴向柱塞马达连杆滑靴与斜盘摩擦副烧损原因判断和改进[J].润滑与密封,1994,19(1):40-47. 被引量:3
  • 2KOC E, HOOKE C J, LI K Y. Slipper balance in axial piston pumps and motors[J]. Transctions of the ASME, 1992, 114: 766-772.
  • 3KOC E, HOOKE C J. Investigation into the effects of orifice size,offset and overclamp ratio on the lubrication of slipper bearings[J]. Tribology International, 1996, 29(4): 299-305.
  • 4KOC E, HOOKE C J. Considerations in the design of partially hydrostatic slipper beatings[J]. Tribology International, 1997, 30(11): 815-823.
  • 5CANBULUT F. The experimental analyses of the effects of the geometric and working parameters on the circular hydrostatic thrust beatings[J]. JSME International Journal, 2005, 48(4): 715-722.
  • 6MANRING N D, WRAY C L, DONG Zhilin. Experimental studies on the performance of slipper bearings within axial-piston pumps[J]. Journal of Tribology, 2004, 126: 511-518.
  • 7BERGADA J M, HAYNES J M, WATTON J. Leakage and groove pressure of an axial piston pump slipper with multiple lands[J]. Tribology Transactions, 2008, 51: 469-482.
  • 8BERGADA J M, WATTON J. Optimisation of the lift characteristics of an axial piston pump grooved slipper[C]// Proceedings of the 6th JFPS International Symposium on Fluid Power, Tsukuba, Japan, 2005: 700-704.
  • 9HARRIS R M, EDGE K A, TILLEY D G. Prediction the behavior of slipper pads in swashplate-type axial piston pumps[J]. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118: 41-47.
  • 10HUANG C. CASPAR based slipper performance prediction in axial piston purnps[C]//Proceedings of the 3rd FPNI.PhD Symposium on Fluid Power, Terassa, Spain, 2004: 229-238.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部