摘要
由于温度、机械力、生化等多种影响因子对机体的生物学行为产生重要影响,生物体在多物理场下保持动态平衡是其正常活动的关键条件.研究生物热-力-电生理耦合行为,旨在交叉融合多个学科,建立生物传热学、生物力学、神经生理学等数理模型,系统开展跨尺度热-力-电生理耦合行为研究,并将成果应用于生物医学领域,对理解生物体的正常功能以及重大疾病的病理机制和有效诊治具有重要意义.其核心思想在于发现关键科学问题、识别交叉学科,并集成学科优势,推动理论创新和技术创新,为生命医学领域带来新突破.该文以剑桥大学和DNA双螺旋结构的发现为背景,以大脑、皮肤、牙齿等为例,介绍生物热-力-电生理耦合学这一新兴交叉学科的起源和内涵.
The behaviors of biomaterials are influenced by a multitude of factors including temperature,me⁃chanical load,and biochemical environments.The dynamic equilibrium of organism within a multiphysical field is crucial for its physiological functions.Therefore,a comprehensive investigation into the bio⁃thermo⁃mechano⁃electrophysiological behaviors is of great significance for the elucidation of pathologies and the development of effective diagnostic and therapeutic strategies.Such inquiries inherently require a multidisciplinary approach,necessitating the integration of diverse disciplinary knowledge and the pioneering of innovative cross⁃disciplina⁃ry research.The core idea is to discover key scientific questions,identify interdisciplinary disciplines,integrate disciplinary advantages,promote theoretical and technological innovations,and bring new breakthroughs in the biomedical field.With the discovery of DNA double helix structure in Cambridge University as the background,and the tissues of brain,skin,and teeth,etc.as examples,this paper introduces the evolution and intension of bio⁃thermo⁃mechano⁃electrophysiology,a new interdisciplinary subject.
作者
孙学超
刘少宝
林敏
徐峰
卢天健
SUN Xuechao;LIU Shaobao;LIN Min;XU Feng;LU Tianjian(State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210001,P.R.China;Bioinsopired Engineering and Biomechanics Center(BEBC),The Key Laboratory of Biomedical Information Engineering of Ministry of Education,Xi’an Jiaotong University,Xi’an 710049,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2024年第6期651-669,共19页
Applied Mathematics and Mechanics
基金
国家自然科学基金(重点项目)(12032010)
江苏省研究生科研与实践创新计划项目(KYCX23_0351)。
关键词
皮肤
牙齿
大脑
跨尺度
学科交叉
skin
teeth
brain
cross-scale
interdisciplinary