期刊文献+

分级中空结构BiOBr-Pt催化剂用于光催化CO_(2)还原

Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO_(2) reduction
下载PDF
导出
摘要 以乙二醇为溶剂,聚乙烯吡咯烷酮为表面活性剂,通过一步溶剂热法合成了分级中空结构的BiOBr-Pt催化剂。合成的分级中空结构BiOBr-2h催化剂的比表面积为28 m^(2)·g^(-1),是对比样品BiOBr-1h的2倍,这种结构为催化反应提供更多的反应活性位点。此外,在催化剂中引入Pt增强了BiOBr的载流子传导速率,而且Pt可以作为电子陷阱捕获周围大量电子,有效抑制光生载流子的复合,从而提高CO_(2)还原的催化活性。光催化CO_(2)还原实验结果表明,BiOBr-Pt的主要产物为CO,产物选择性为99%,其CO产率达到了20.8μmol·h^(-1)·g^(-1),为原始BiOBr的2.1倍。这一结果说明,这种Pt负载且具有分级中空结构的催化剂可以有效地将CO_(2)转化为增值化学品。 BiOBr-Pt catalysts with hierarchical hollow structures were synthesized by a one-step solvothermal method using ethylene glycol as solvent and polyvinylpyrrolidone as surfactant.The synthesized hierarchical hollow structure BiOBr-2h catalyst had a specific surface area of 28 m^(2)·g^(-1),twice as large as the comparison sample BiOBr-1h.This structure provides more reactive sites for the catalytic reaction.Meanwhile,introducing Pt into the catalyst can enhance the carrier conduction rate of BiOBr.Moreover,it can act as an electron trap to capture many surrounding electrons and inhibit the complexation of photogenerated carriers,thus improving the catalytic activity of CO_(2) reduction.The main product of BiOBr-Pt was CO with 99% product selectivity and its CO yield was 20.8 μmol·h^(-1)·g^(-1).Its performance was 2.1 times that of primitive BiOBr.This Pt loading with a hierarchical hollow structure can effectively convert CO_(2).
作者 王坤 刘文蕊 江鹏 宋宇航 陈丽华 邓兆 WANG Kun;LIU Wenrui;JIANG Peng;SONG Yuhang;CHEN Lihua;DENG Zhao(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China)
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第7期1270-1278,共9页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.22078288,22302152,22293020)资助。
关键词 光催化 BiOBr CO_(2)还原 中空结构 photocatalysis BiOBr CO_(2) reduction hollow structure
  • 相关文献

参考文献4

二级参考文献44

  • 1Linsebigler A.L.,Lu G.,Yates J.T.,Chem.Rev.,1995,95,735-758.
  • 2Asahi R.,Morikawa T.,Ohwaki T.,Aoki K.,Taga Y.,Science,2001,293(13),269-271.
  • 3Pan C.S.,Zhu Y.F.,Environ.Sci.Technol.,2010,44(14),5570-5574.
  • 4Liu Y.F.,Zhu Y.Y.,Xu J.,Bai X.J.,Zong R.L.,Zhu Y.F.,Appl.Catal.B:Environ.,2013,142/143,561-567.
  • 5Yu J.Q.,Zhang Y.,Kudo A.,J.Solid State Chem.,2009,182(2),223-228.
  • 6Zhang L.S.,Wang H.L.,Chen Z.G.,Wong P.K.,Liu J.S.,Appl.Catal.B:Environ.,2011,106(1/2),1-13.
  • 7Huang Y.,Ai Z.H.,Ho W.K.,Chen M.J.,Lee S.C.,J.Phys.Chem.C,2010,114(21),6342-6349.
  • 8Wang C.Y.,Zhang H.,Li F.,Zhu L.Y.,Environ.Sci.Technol.,2010,44(17),6843-6848.
  • 9Chen F.,Liu H.L.,Bagwasi S.,Shen X.X.,Zhang J.L.,J.Photochem.Photobiol.A:Chem.,2010,215(1),76-80.
  • 10Kou J.,Zhang H.,Li Z.,Ouyang S.,Ye J.,Zou Z.,Catal.Lett.,2008,122,131-137.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部