期刊文献+

城市交通枢纽行人异常行为分析研究综述

Research on Abnormal Behavior of Crowd in Urban Transportation Hubs
下载PDF
导出
摘要 城市交通枢纽是居民出行的重要支撑节点,普遍具有客流密集、空间封闭、多方式客流复杂交织等特征,也承担了巨大的安全组织与运维的压力。因此,对枢纽内行人异常行为的管控是保证其安全运维的重要关注点之一。目前,对枢纽行人异常行为的辨识主要是依托计算机视觉技术来实现,即:一种是主要关注客流轨迹和密度差异,利用目标检测技术提取枢纽内行人目标并进行轨迹预测,以分析个体或小群体的异常轨迹数据来判断行人的异常行为;另外一种是利用姿势估计技术提取行人的微观动作数据,通过分析行人的骨骼关节点数据来判断其异常动作和行为意图。故梳理了枢纽内行人行为的研究成果,概括分析了基于模型驱动和数据驱动的行人异常行为研究与应用成果,并解析行人异常行为的致因机理,总结了枢纽面对行人异常行为的管理措施,最后进行了枢纽行人异常行为研究的分析和展望。该综述可以加深对交通枢纽行人异常行为的理解,为枢纽内行人的安全运维提供参考和支持。 Urban transportation hubs are pivotal nodes supporting residents’travel,characterized by high passenger flow,spatial confinement,and complex intertwining of multiple modes of passenger flow,which impose significant pressure on safety organization and operation.Therefore,the controlling abnormal behaviors of pedestrian within hubs is one of the key focal points to ensure the safe operation.Currently,the identification of abnormal behaviors mainly relies on computer vision technology.Namely,one approach focuses on tracking passenger trajectories and density disparities,extracts pedestrian targets within hubs and predict the trajectories by target detection technology and determines the abnormal behaviors by analyzing individual or small group abnormal trajectory data.Another approach involves extracting micro-motion data of pedestrians by pose estimation technology,identify the abnormal actions and behavioral intentions by analyzing pedestrian skeletal joint data.Thus,this review summarizes research achievements,comprehensively analyzes model-driven and data-driven research and application outcomes,elucidates the causal mechanisms and summarizes management measures of pedestrian abnormal behaviors.Finally,an analysis and outlook on the research of pedestrian abnormal behaviors within hubs are conducted.This review deepens understanding of pedestrian abnormal behaviors at transportation hubs and provides reference and support for the safe operation and maintenance.
作者 赵霞 高源 李之红 郄堃 唐嘉立 Zhao Xia;Gao Yuan;Li Zhihong;Qie Kun;Tang Jiali(School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Jiangxi Traffic Monitoring Command Center,Nanchang 330036,China)
出处 《市政技术》 2024年第7期124-132,共9页 Journal of Municipal Technology
关键词 交通枢纽 行人异常行为 目标检测 模型驱动 数据驱动 transportation hub abnormal pedestrian behavior object detection model driven data driven
  • 相关文献

参考文献18

二级参考文献172

  • 1陈然,董力耘.中国大都市行人交通特征的实测和初步分析[J].上海大学学报(自然科学版),2005,11(1):93-97. 被引量:75
  • 2吴正.低速混合型城市交通的流体力学模型[J].力学学报,1994,26(2):149-157. 被引量:69
  • 3林思能.行人过街的交通模拟[J].广东工学院学报,1996,13(4):107-112. 被引量:8
  • 4万琴,王耀南.一种多运动目标检测、跟踪方法研究与实现[J].计算机应用研究,2007,24(1):199-202. 被引量:16
  • 5李得伟,韩宝明,张琦.基于动态博弈的行人交通微观仿真模型[J].系统仿真学报,2007,19(11):2590-2593. 被引量:14
  • 6LI Y,XU C J,LIU J Z.Detecting Irregularity in Videos Using Kernel Estimation and K-D Trees[C]// Proceedings of the 14th annual ACM international conference on Multimedia.New York:ACM Press,2006:639-642.
  • 7ZHOU H,KIMBER D.Unusual Event Detection via Multi-camera Video Mining[C]// Proceedings of the 18th International Conference on Pattern Recognition-Volume 03.Washington,DC:IEEE Computer Society,2006:1161-1166.
  • 8ZHANG D,DANIEL G P,BENGIO S,et al.Semi-supervised Adapted HMMs for Unusual Event Detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Volume 1-Volume 01.Washington,DC:IEEE Computer Society,2005:611-618.
  • 9WU X Y,OU Y S,QIAN H H,et al.A detection system for human Abnormal behavior[J].IEEE International Conference on Intelligent Robots and Systems,2005:1204-1208.
  • 10RAO S,SASTRY P S.Abnormal activity Detection in video sequences using learnt probability densities[J].Conference on Convergent Technologies for Asia Pacific Region,2003,1:369-372.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部