摘要
由于无线传感器网络在簇间数据转发过程中消耗能量较大、转发效率低,导致数据在转发过程中容易失效。为此,提出基于模糊评判的无线传感器网络簇间数据转发算法。建立无线传感器网络模型和通信模型,明确节点的运行方式和转发数据所消耗的能量,构建模糊综合评判模型,选取梯形隶属度函数计算传感器节点的相似度和活跃度,找出最佳转发节点,完成数据转发任务。仿真结果表明,所提算法的第一个节点死亡轮数和网络失效轮数最高为167和178,在仿真轮数达到1000轮时,该算法剩余的网络能量和节点平均能量分别为4 J和0.01 J,证明所提算法在数据转发过程中可消耗最少的能量,高效率地完成数据转发任务。
Due to the high energy consumption and low forwarding efficiency of wireless sensor networks in the process of inter cluster data forwarding,data is prone to failure in the process of forwarding.Therefore,an inter cluster data forwarding algorithm based on fuzzy evaluation is proposed for wireless sensor networks.The wireless sensor network model and communication model are defined,the opera-tion mode of the node and the energy consumed by forwarding data are defined,a fuzzy comprehensive evaluation model is built,trape-zoidal membership function are defined to calculate the similarity and activity of sensor nodes,the best forwarding node if found,the data forwarding task is completed.The simulation results show that the value of the maximum number of dead cycles and network failure cy-cles of the first node of the proposed algorithm are 167 and 178.When the number of simulation cycles reaches 1000,the remaining network energy and the average node energy of the algorithm are 4 J and 0.01 J respectively,which proves that the proposed algorithm can consume the least energy in the process of data forwarding and complete the task of data forwarding efficiently.
作者
周海飞
芦翔
胡春芬
ZHOU Haifei;LU Xiang;HU Chunfen(School of Cyberspace Security,Changzhou College of Information Technology,Changzhou Jiangsu 213164,China;Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100049,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2024年第6期1067-1072,共6页
Chinese Journal of Sensors and Actuators
基金
2021年江苏省教育厅“青蓝工程”培养对象项目(苏教师函[2021]11号)
2019年“工业互联网解决方案及安全防护技术项目”(PYPT201902G)
2021年“工业互联网预测性维护创新应用”科技创新团队项目(CCIT2021STIT010202)
2021年未来网络科研基金项目(苏教办科函2021(11号))
2024年江苏省高层次人才培养计划(第七期“333工程”)培养对象项目(苏教师函[2024]13号)。
关键词
无线传感器网络
簇间数据转发
模糊评判
梯形隶属度函数
节点活跃度
wireless sensor network
data forwarding between clusters
fuzzy evaluation
trapezoidal membership function
node activity