摘要
目的:为了研究着火车辆停靠朝向对隧道顶棚温度分布和烟气运动特性的影响。方法:采用数值模拟结合比尺模型试验的方法,分析在不同纵向风速和火源功率下,横向、纵向两种典型火源的顶棚最高温升和烟气回流规律。结果:相比纵向火源,横向火源烟气阻塞效应更强,顶棚附近烟气运动速度更快,烟气卷吸量更大;且火源占隧道宽度比例较大,烟气较早进入一维蔓延,使得隧道顶棚温度更低。随火源功率和纵向风速的增大,两种火源朝向下的顶棚温度差距越大,30 MW火源下顶棚最高温度的差值可达57%。较纵向火源,横向火源隧道顶棚温度更低,烟气热浮力减小,烟气运动衰弱。随火源功率增加和纵向风速降低,回流长度差距逐渐增大,30 MW火源下最大差值为36 m。结论:横向火源烟气层热稳定性更弱,烟气沉降更为明显,即使在低风速下,近火源段烟气层也易被破坏。
Aims:This paper aims to study the effect of the flaming vehicle orientation on the temperature distribution and smoke movement characteristics of the tunnel ceiling.Methods:The maximum ceiling temperature rises and smoke back-layering rules of the two typical fire sources under different longitudinal velocity and fire source power were analyzed by numerical simulation combined with the scale model test.Results:Compared to the longitudinal fire source,the horizontal fire source had a stronger smoke blocking effect,with faster smoke movement near the ceiling and greater smoke roll absorption;and the fire source occupied a larger proportion of the tunnel width,with smoke spreading into the first dimension earlier,making the ceiling temperature lower.As the power of the fire source and the longitudinal velocity increased,the difference in ceiling temperature between the two fire sources increased,with a difference of up to 57%in the maximum ceiling temperature under a 30 MW fire source.Compared to the longitudinal fire source,the horizontal fire source tunnel ceiling temperature was lower.The smoke buoyancy was reduced;and the smoke movement was weakened.As the power of the fire source increased and the longitudinal velocity decreased,the difference in back-layering length gradually increased,with a maximum difference of 36 meters under a 30 MW fire source.Conclusions:The stability of the smoke layer of the horizontal fire source is weaker;and the smoke subsiding is more obvious.Even if the low velocity is small,the smoke layer near the fire source section can be destroyed.
作者
黄志
陈茗
夏立群
曹刚
田佳鑫
朱凯
HUANG Zhi;CHEN Ming;XIA Liqun;CAO Gang;TIAN Jiaxin;ZHU Kai(College of Energy Environment and Safety Engineering,China Jiliang University,Hangzhou 310018,China;Center of Balance Architecture,Zhejiang University,Hangzhou 310023,China;China Railway No.4 Survey and Design Institute Group,Wuhan 430063,China;Hangzhou Fuyang Urban Construction Investment Group,Hangzhou 311400,China)
出处
《中国计量大学学报》
2024年第2期258-265,共8页
Journal of China University of Metrology
基金
浙江省重点研发项目(No.2018C03029)
宁波市交通运输科技计划项目(No.202113)
浙江省大学生科技创新活动计划项目(No.2022R409A016)。
关键词
安全工程
隧道火灾
横向火源
温度分布
烟气运动
safety engineering
tunnel fire
transverse fire source
temperature distribution
smoke movement