期刊文献+

横向火源下隧道火灾温度分布和烟气运动特性研究

Research on temperature distribution and smoke movement characteristics of tunnel fires with a transverse fire source
下载PDF
导出
摘要 目的:为了研究着火车辆停靠朝向对隧道顶棚温度分布和烟气运动特性的影响。方法:采用数值模拟结合比尺模型试验的方法,分析在不同纵向风速和火源功率下,横向、纵向两种典型火源的顶棚最高温升和烟气回流规律。结果:相比纵向火源,横向火源烟气阻塞效应更强,顶棚附近烟气运动速度更快,烟气卷吸量更大;且火源占隧道宽度比例较大,烟气较早进入一维蔓延,使得隧道顶棚温度更低。随火源功率和纵向风速的增大,两种火源朝向下的顶棚温度差距越大,30 MW火源下顶棚最高温度的差值可达57%。较纵向火源,横向火源隧道顶棚温度更低,烟气热浮力减小,烟气运动衰弱。随火源功率增加和纵向风速降低,回流长度差距逐渐增大,30 MW火源下最大差值为36 m。结论:横向火源烟气层热稳定性更弱,烟气沉降更为明显,即使在低风速下,近火源段烟气层也易被破坏。 Aims:This paper aims to study the effect of the flaming vehicle orientation on the temperature distribution and smoke movement characteristics of the tunnel ceiling.Methods:The maximum ceiling temperature rises and smoke back-layering rules of the two typical fire sources under different longitudinal velocity and fire source power were analyzed by numerical simulation combined with the scale model test.Results:Compared to the longitudinal fire source,the horizontal fire source had a stronger smoke blocking effect,with faster smoke movement near the ceiling and greater smoke roll absorption;and the fire source occupied a larger proportion of the tunnel width,with smoke spreading into the first dimension earlier,making the ceiling temperature lower.As the power of the fire source and the longitudinal velocity increased,the difference in ceiling temperature between the two fire sources increased,with a difference of up to 57%in the maximum ceiling temperature under a 30 MW fire source.Compared to the longitudinal fire source,the horizontal fire source tunnel ceiling temperature was lower.The smoke buoyancy was reduced;and the smoke movement was weakened.As the power of the fire source increased and the longitudinal velocity decreased,the difference in back-layering length gradually increased,with a maximum difference of 36 meters under a 30 MW fire source.Conclusions:The stability of the smoke layer of the horizontal fire source is weaker;and the smoke subsiding is more obvious.Even if the low velocity is small,the smoke layer near the fire source section can be destroyed.
作者 黄志 陈茗 夏立群 曹刚 田佳鑫 朱凯 HUANG Zhi;CHEN Ming;XIA Liqun;CAO Gang;TIAN Jiaxin;ZHU Kai(College of Energy Environment and Safety Engineering,China Jiliang University,Hangzhou 310018,China;Center of Balance Architecture,Zhejiang University,Hangzhou 310023,China;China Railway No.4 Survey and Design Institute Group,Wuhan 430063,China;Hangzhou Fuyang Urban Construction Investment Group,Hangzhou 311400,China)
出处 《中国计量大学学报》 2024年第2期258-265,共8页 Journal of China University of Metrology
基金 浙江省重点研发项目(No.2018C03029) 宁波市交通运输科技计划项目(No.202113) 浙江省大学生科技创新活动计划项目(No.2022R409A016)。
关键词 安全工程 隧道火灾 横向火源 温度分布 烟气运动 safety engineering tunnel fire transverse fire source temperature distribution smoke movement
  • 相关文献

参考文献6

二级参考文献28

  • 1朱伟,卢平,廖光煊,厉培德,洪亦修.地铁车站出入口火灾烟气特性的模拟研究[J].中国工程科学,2005,7(2):91-96. 被引量:14
  • 2李立明.隧道火灾烟气的温度特征与纵向通风控制研究[D].合肥:中国科学技术大学,2012.
  • 3孙可庆.纵向通风条件下隧道火灾烟气流动特性研究[D].北京:北京建筑工程学院,2012.
  • 4Wu Y, Bakar M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity [J]. Fire Safety Journal, 2000,35 : 363- 390.
  • 5Kai Kang. Characteristic length scale of critical ventilation velocity in tunnel smoke control [J]. Tunnelling and Underground Space Technology, 2010,25 : 205- 211.
  • 6Yang Hui, Jia Li, Yang Lixin. Numerical analysis of tunnel thermal plume control using longitudinal ventilation [J]. Fire Safety Jour- nal, 2009,44 : 1067- 1077.
  • 7Hu L H, Peng W, Huo R. Critical wind velocity for arresting up- wind gas and smoke dispersion induced by near-wall fire in a road tunnel [J]. Journal of Hazardous Materials, 2008,150 :68- 75.
  • 8李颖臻.含救援站特长铁路隧道火灾特性及烟气控制研究[D].成都:西南交通大学,20lO.'.
  • 9王彦富,蒋军成,龚延风,钟星灿,茅靳丰.全尺寸隧道火灾实验研究与烟气逆流距离的理论预测[J].中国安全科学学报,2007,17(8):37-41. 被引量:25
  • 10毛军,郗艳红,樊洪明.隧道内火焰顶棚射流最高温度的分布研究[J].中国矿业大学学报,2010,39(3):346-351. 被引量:3

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部