期刊文献+

A hybrid memory architecture supporting fine-grained data migration 被引量:2

原文传递
导出
摘要 Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory media.Most previous proposals usually migrate data at a granularity of 4 KB pages,and thus waste memory bandwidth and DRAM resource.In this paper,we propose Mocha,a non-hierarchical architecture that organizes DRAM and NVM in a flat address space physically,but manages them in a cache/memory hierarchy.Since the commercial NVM device-Intel Optane DC Persistent Memory Modules(DCPMM)actually access the physical media at a granularity of 256 bytes(an Optane block),we manage the DRAM cache at the 256-byte size to adapt to this feature of Optane.This design not only enables fine-grained data migration and management for the DRAM cache,but also avoids write amplification for Intel Optane DCPMM.We also create an Indirect Address Cache(IAC)in Hybrid Memory Controller(HMC)and propose a reverse address mapping table in the DRAM to speed up address translation and cache replacement.Moreover,we exploit a utility-based caching mechanism to filter cold blocks in the NVM,and further improve the efficiency of the DRAM cache.We implement Mocha in an architectural simulator.Experimental results show that Mocha can improve application performance by 8.2%on average(up to 24.6%),reduce 6.9%energy consumption and 25.9%data migration traffic on average,compared with a typical hybrid memory architecture-HSCC.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第2期31-41,共11页 中国计算机科学前沿(英文版)
基金 supported jointly by the National Key Research and Development Program of China (No.2022YFB4500303) the National Natural Science Foundation of China (NSFC) (Grant Nos.62072198,61832006,61825202,61929103).
  • 相关文献

参考文献4

二级参考文献65

  • 1Kilby J. Semiconductor Device. US Patent 3,643,138.
  • 2Dennard R H. Field-Effect Transistor Memory. US Patent 3,387,286.
  • 3Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38:114-117.
  • 4Hsiao Y H, Lue H T, Hsu T H, et al. A critical examination of 3D stackable NAND flash memory architectures by simulation study of the scaling capability. In: IEEE International Memory Workshop, IMW. 2010. 2010. 5488390.
  • 5Raoux S, Burr G. W, Breitwisch M J, et al. Phase change random access memory: a scalable technology. IBM J Res Dev, 2008, 52:465-480.
  • 6Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21:1450.
  • 7Wang W J, Shi L P, Zhao R, et al. Fast phase transitions induced by picosecond electrical pulse.s on phase change memory cells. Appl Phys Lett, 2008, 93:043121.
  • 8Adler D, Henisch H K, Mott N. Mechanism of threshold switching in amorphous alloys, Rev Mod Phys, 1978, 50: 209-220.
  • 9Kalb J, Spaepen F, Wuttig M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl Phys Lett, 2004, 84:5240-5242.
  • 10Pirovano A, Lacaita A L, Merlani D, et al. Electronic switching effect in phase-change memory cells. In: IEDM Technical Digest pages, 2002. 923-926.

共引文献5

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部