期刊文献+

On non-abelian extensions of 3-Leibniz algebras

原文传递
导出
摘要 In this paper,we study non-abelian extensions of 3-Leibniz algebras through Maurer-Cartan elements.We construct a differential graded Lie algebra and prove that there is a one-to-one correspondence between the isomorphism classes of non-abelian extensions in 3-Leibniz algebras and the equivalence classes of Maurer-Cartan elements in this differential graded Lie algebra.And also the Leibniz algebra structure on the space of fundamental elements of 3-Leibniz algebras is analyzed.It is proved that the non-abelian extension of 3-Leibniz algebras induce the non-abelian extensions of Leibniz algebras.
机构地区 School of Mathematics
出处 《Frontiers of Mathematics in China》 CSCD 2024年第2期57-74,共18页 中国高等学校学术文摘·数学(英文)
  • 相关文献

参考文献4

二级参考文献19

  • 1Loday J L. Une version non commutative des algebres de Lie: Les algebres de Leibniz. Enseign Math, 1993, 3:269-293.
  • 2Ibanez R, Leon M, Marrero J, et al. Leibniz algebroid associated with a Nambu-Poisson structure. J Phys A, 1999, 32:8129-8144.
  • 3Kinyon M K, Weinstein A. Leibniz algebras, Courant algebroids, and multiplications on reductive homo- geneous spaces. Amer J Math, 2001, 123:525-550.
  • 4Bagger J, Lambert N. Modeling multiple M2's. Phys Rev D, 2007, 75:045020.
  • 5Casas, J M, Loday J L, Pirashvili T. Leibniz n-algebras. Forum Math, 2002, 14:189-207.
  • 6Gustavsson A. Algebraic structures on parallel M2-branes. Nucl Phys B, 2009, 811:66-76.
  • 7Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D, 2008, 77:065008.
  • 8Hagiwaxa Y, Mizutani T. Leibniz algebras associated with foliations. Kodai Math J, 2002, 25:151-165.
  • 9Casas J, Insua M, Ladra M. Poincare-Birkhoff-Witt theorem for Leibniz n-algebras. J Symbolic Comput, 2007, 42:1052-1065.
  • 10Albeverio S, Ayupov S, Omirov B, et al. Cartan Subalgebras of Leibniz n-Algebras. Comm Alg, 2009, 37(6): 2080-2096.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部